首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Acta Oecologica》2004,25(1-2):53-60
Differences in fungus communities growing in margins of small postglacial ponds (PPMs) can be explained by land use. Some 66% of all species collected were recorded exclusively in PPMs located in meadows with solitary trees, and communities distinguished were typical of this kind of land use. These PPMs shared 26% of the species with two other kinds of PPMs, located in cultivated terrain, i.e. field and pasture (fed by cattle). These latter kinds of PPMs were distinguished by a much smaller number of fungus species (about 36% of total number of species), and no separate species populations were associated with them. There were also a number of eurytopic species (16% of total number), which occurred in all sites, some of them with similar frequencies. The investigated PPMs are very rich in saprotrophic fungus species (90% of total species number there), which is another argument for their peculiarity and need of protection of their habitats as they essentially contribute to maintaining fungus biodiversity.  相似文献   

2.
Although invasive plant species often have a hybrid ancestry, unambiguous evidence that hybridization has stimulated the evolution of invasive behaviors has been difficult to come by. Here, we briefly review how hybridization might contribute to the colonization of novel habitats, range expansions, and invasiveness and then describe work on hybrid sunflowers that forges a direct link between hybridization and ecological divergence. We first discuss the invasion of Texas by the common sunflower and show that the introgression of chromosomal segments from a locally adapted species may have facilitated range expansion. We then present evidence that the colonization of sand dune, desert floor, and salt marsh habitats by three hybrid sunflower species was made possible by selection on extreme or “transgressive” phenotypes generated by hybridization. This body of work corroborates earlier claims regarding the role of hybridization in adaptive evolution and provides an experimental and conceptual framework for ongoing studies in this area.  相似文献   

3.
4.

Background  

Theory predicts that speciation can be quite rapid. Previous examples comprise a wide range of organisms such as sockeye salmon, polyploid hybrid plants, fruit flies and cichlid fishes. However, few studies have shown natural examples of rapid evolution giving rise to new species in marine environments.  相似文献   

5.
Bioremediation of petroleum hydrocarbon contaminants in marine habitats.   总被引:25,自引:0,他引:25  
Bioremediation is being increasingly seen as an effective, environmentally benign treatment for shorelines contaminated as a result of marine oil spills. Despite a relatively long history of research on oil-spill bioremediation, it remains an essentially empirical technology and many of the factors that control bioremediation have yet to be adequately understood. Nutrient amendment is a widely accepted practice in oil-spill bioremediation but there is scant understanding of the systematic effects of nutrient amendment on biodegradative microbial populations or the progress of bioremediation. Recent laboratory and field research suggests that resource-ratio theory may provide a theoretical framework that explains the effects of nutrient amendment on indigenous microbial populations. In particular, the theory has been invoked to explain recent observations that nutrient levels, and their relative concentration, influence the composition of hydrocarbon-degrading microbial populations. This in turn influences the biodegradation rate of aliphatic and aromatic hydrocarbons. If such results are confirmed in the field, then it may be possible to use this theoretical framework to select bioremediation treatments that specifically encourage the rapid destruction of the most toxic components of complex pollutant mixtures.  相似文献   

6.
Despite nearly a century of study, the diversity of marine fungi remains poorly understood. Historical surveys utilizing microscopy or culture-dependent methods suggest that marine fungi are relatively species-poor, predominantly Dikarya, and localized to coastal habitats. However, the use of high-throughput sequencing technologies to characterize microbial communities has challenged traditional concepts of fungal diversity by revealing novel phylotypes from both terrestrial and aquatic habitats. Here, I used ion semiconductor sequencing (Ion Torrent) of the ribosomal large subunit (LSU/28S) to explore fungal diversity from water and sediment samples collected from four habitats in coastal North Carolina. The dominant taxa observed were Ascomycota and Chytridiomycota, though all fungal phyla were represented. Diversity was highest in sand flats and wetland sediments, though benthic sediments harbored the highest proportion of novel sequences. Most sequences assigned to early-diverging fungal groups could not be assigned beyond phylum with statistical support, suggesting they belong to unknown lineages.  相似文献   

7.
Driven by climate change, marine biodiversity is undergoing a phase of rapid change that has proven to be even faster than changes observed in terrestrial ecosystems. Understanding how these changes in species composition will affect future marine life is crucial for conservation management, especially due to increasing demands for marine natural resources. Here, we analyse predictions of a multiparameter habitat suitability model covering the global projected ranges of >33,500 marine species from climate model projections under three CO2 emission scenarios (RCP2.6, RCP4.5, RCP8.5) up to the year 2100. Our results show that the core habitat area will decline for many species, resulting in a net loss of 50% of the core habitat area for almost half of all marine species in 2100 under the high-emission scenario RCP8.5. As an additional consequence of the continuing distributional reorganization of marine life, gaps around the equator will appear for 8% (RCP2.6), 24% (RCP4.5), and 88% (RCP8.5) of marine species with cross-equatorial ranges. For many more species, continuous distributional ranges will be disrupted, thus reducing effective population size. In addition, high invasion rates in higher latitudes and polar regions will lead to substantial changes in the ecosystem and food web structure, particularly regarding the introduction of new predators. Overall, our study highlights that the degree of spatial and structural reorganization of marine life with ensued consequences for ecosystem functionality and conservation efforts will critically depend on the realized greenhouse gas emission pathway.  相似文献   

8.
Strong top-down control by consumers has been demonstrated in rocky intertidal communities around the world. In contrast, the role of bottom-up effects (nutrients and productivity), known to have important influences in terrestrial and particularly freshwater ecosystems, is poorly known in marine hard-bottom communities. Recent studies in South Africa, New England, Oregon and New Zealand suggest that bottom-up processes can have important effects on rocky intertidal community structure. A significant aspect of all of these studies was the incorporation of processes varying on larger spatial scales than previously considered (10’s to 1000’s of km). In all four regions, variation in oceanographic factors (currents, upwelling, nutrients, rates of particle flux) was associated with different magnitudes of algal and/or phytoplankton abundance, availability of particulate food, and rates of recruitment. These processes led to differences in prey abundance and growth, secondary production, consumer growth, and consumer impact on prey resources. Oceanographic conditions therefore may vary on scales that generate ecologically significant variability in populations at the bottom of the food chain, and through upward-flowing food chain effects, lead to variation in top-down trophic effects. I conclude that top-down and bottom-up processes can be important joint determinants of community structure in rocky intertidal habitats, and predict that such effects will occur generally wherever oceanographic ‘discontinuities’ lie adjacent to rocky coastlines. I further argue that increased attention by researchers and of funding agencies to such benthic–pelagic coupling would dramatically enhance our understanding of the dynamics of marine ecosystems.  相似文献   

9.
Sculpin fishes of the North American Pacific Coast provide an ideal opportunity to examine whether adaptive morphological character shifts have facilitated occupation of novel habitat types because of their well‐described phylogeny and ecology. In this group, the basal‐rooted species primarily occupy the subtidal habitat, whereas the species in the most distal clades are found in the intertidal. We tested multiple evolutionary models to determine whether changes in body size and changes in number of scales are adaptive for habitat use in sculpins. Based on a statistically robust, highly resolved molecular phylogeny of 26 species of sculpins, in combination with morphometric and habitat affinity data, our analyses show that an adaptive model based on habitat use best explains changes in body size and number of scales. The habitat model was statistically supported over models of neutral evolution, stabilizing selection across all habitats, and three clade‐based models. We suggest that loss of scales and reduction of body size in the intertidal may facilitate cutaneous breathing in air when tidepools become hypoxic during low tides. This study demonstrates how the combined use of phylogenetic, ecological and statistical approaches helps to identify traits that are likely adaptive to novel habitats.  相似文献   

10.
11.
Vampire amoebae (vampyrellids) are predators of algae, fungi, protozoa and small metazoans known primarily from soils and in freshwater habitats. They are among the very few heterotrophic naked, filose and reticulose protists that have received some attention from a morphological and ecological point of view over the last few decades, because of the peculiar mode of feeding of known species. Yet, the true extent of their biodiversity remains largely unknown. Here we use a complementary approach of culturing and sequence database mining to address this issue, focusing our efforts on marine environments, where vampyrellids are very poorly known. We present 10 new vampyrellid isolates, 8 from marine or brackish sediments, and 2 from soil or freshwater sediment. Two of the former correspond to the genera Thalassomyxa Grell and Penardia Cash for which sequence data were previously unavailable. Small-subunit ribosomal DNA analysis confirms they are all related to previously sequenced vampyrellids. An exhaustive screening of the NCBI GenBank database and of 454 sequence data generated by the European BioMarKs consortium revealed hundreds of distinct environmental vampyrellid sequences. We show that vampyrellids are much more diverse than previously thought, especially in marine habitats. Our new isolates, which cover almost the full phylogenetic range of vampyrellid sequences revealed in this study, offer a rare opportunity to integrate data from environmental DNA surveys with phenotypic information. However, the very large genetic diversity we highlight within vampyrellids (especially in marine sediments and soils) contrasts with the paradoxically low morphological distinctiveness we observed across our isolates.  相似文献   

12.
The marine Roseobacter clade comprises several genera of marine bacteria related to the uncultured SAR83 cluster, the second most abundant marine picoplankton lineage. Cultivated representatives of this clade are physiologically heterogeneous, and only some have the capability for aerobic anoxygenic photosynthesis, a process of potentially great ecological importance in the world's oceans. In an attempt to correlate phylogeny with ecology, we investigated the diversity of Roseobacter clade strains from various marine habitats (water samples, biofilms, laminariae, diatoms, and dinoflagellate cultures) by using the 16S rRNA gene as a phylogenetic marker gene. The potential for aerobic anoxygenic photosynthesis was determined on the genetic level by PCR amplification and sequencing of the pufLM genes of the bacterial photosynthesis reaction center and on the physiological level by detection of bacteriochlorophyll (Bchl) a. A collection of ca. 1,000 marine isolates was screened for members of the marine Roseobacter clade by 16S rRNA gene-directed multiplex PCR and sequencing. The 42 Roseobacter clade isolates found tended to form habitat-specific subclusters. The pufLM genes were detected in two groups of strains from dinoflagellate cultures but in none of the other Roseobacter clade isolates. Strains within the first group (the DFL-12 cluster) also synthesized Bchl a. Strains within the second group (the DFL-35 cluster) formed a new species of Roseovarius and did not produce Bchl a under the conditions investigated here, thus demonstrating the importance of genetic methods for screening of cultivation-dependent metabolic traits. The pufL genes of the dinoflagellate isolates were phylogenetically closely related to pufL genes from Betaproteobacteria, confirming similar previous observations which have been interpreted as indications of gene transfer events.  相似文献   

13.
Many animal species segregate by sex. Such segregation may be social in nature, or ecological, or both. Grey seals (Halichoerus grypus), like many large mammals, are sexually size dimorphic. In size dimorphic species, allometric differences in morphology, metabolic rate and reproductive costs are likely. Such differences may require the sexes to use different foraging strategies or different habitats. To investigate sexual segregation of habitat in grey seals, we used satellite tracks from 95 (male 46; female 49) adults breeding at Sable Island, Nova Scotia (44 degrees N, 60 degrees W) collected from 1995 to 2005. Location estimates were made from satellite fixes using a state-space movement model to estimate true locations and regularize them in time. Location estimates were used to calculate home range kernels of male and female habitat use each month. Month by sex kernel home ranges revealed striking differences and dynamics in habitat use between males and females on spatial scales broader than most terrestrial examples and at temporal and spatial resolutions rarely available for marine species. Differences were most pronounced just before (October-December) and immediately after breeding (February-March). During both periods, males primarily used areas along the continental shelf break, while females mainly used mid-shelf regions. Coupled with previously identified sex-specific seasonal patterns of energy storage, diving and diet, our findings suggest that males and females differ profoundly in their spatial foraging strategies. These differences may serve to maximize fitness by reducing intersexual competition during key foraging periods.  相似文献   

14.
15.
The community composition of marine planktonic cyanobacteria in transitional marine habitats can influence its overall contribution to aquatic primary production. To understand distribution patterns of marine planktonic cyanobacterial assemblages, phylogenetic and statistical analyses were undertaken on planktonic cyanobacterial 16S rRNA gene sequences from four transitional marine habitats [Baltic Sea (BL), Monterey Bay (MB), South China Sea (SCS) and Sundarbans (SB)]. Out of 3255 sequences analyzed, only 546 sequences were found to be planktonic cyanobacteria and were considered in this study. Among these, 338 sequences representative of Sundarbans, the world's largest mangrove were generated based on Sanger and Illumina sequencing approaches. Based on 16S rRNA phylogeny, four major taxonomic orders of marine planktonic cyanobacteria were recovered in varying proportions with several novel 16S rRNA sequences in each of the four targeted sites. Members of the order Synechococcales were dominant in all the sites (?94% sequences) while the orders Chroococcales and Oscillatoriales were only detected in SB and SCS sites, respectively. In the phylogenetic tree, sequences representing the major marine picocyanobacterial genus Synechococcus showed overwhelming dominance in SB and they were found in three other sites. Prochlorococcus ‐like sequences were found in sizeable number in MB and SCS but were absent in SB and coastal BL. Synechococcus ‐like sequences were represented by three major marine clusters (5.1, 5.2, and 5.3). Three novel clades as part of Synechococcus cluster were detected only in SB and one novel clade in BL. The majority of OTUs were found to be exclusive to each site, whereas some were shared by two or more sites as revealed by beta‐diversity analysis.  相似文献   

16.
Understanding how a monophyletic lineage of a species diverges into several adaptive forms has received increased attention in recent years, but the underlying mechanisms in this process are still under debate. Postglacial fishes are excellent model organisms for exploring this process, especially the initial stages of ecological speciation, as postglacial lakes represent replicated discrete environments with variation in available niches. Here, we combine data of niche utilization, trophic morphology, and 17 microsatellite loci to investigate the diversification process of three sympatric European whitefish morphs from three northern Fennoscandian lakes. The morphological divergence in the gill raker number among the whitefish morphs was related to the utilization of different trophic niches and was associated with reproductive isolation within and across lakes. The intralacustrine comparison of whitefish morphs showed that these systems represent two levels of adaptive divergence: (1) a consistent littoral–pelagic resource axis; and (2) a more variable littoral–profundal resource axis. The results also indicate that the profundal whitefish morph has diverged repeatedly from the ancestral littoral whitefish morph in sympatry in two different watercourses. In contrast, all the analyses performed revealed clustering of the pelagic whitefish morphs across lakes suggesting parallel postglacial immigration with the littoral whitefish morph into each lake. Finally, the analyses strongly suggested that the trophic adaptive trait, number of gill rakers, was under diversifying selection in the different whitefish morphs. Together, the results support a complex evolutionary scenario where ecological speciation acts, but where both allopatric (colonization history) and sympatric (within watercourse divergence) processes are involved.  相似文献   

17.
18.
The taxonomy of marine and non-marine organisms rarely overlap, but the mechanisms underlying this distinction are often unknown. Here, we predicted three major ocean-to-land transitions in the evolutionary history of Flavobacteriaceae, a family known for polysaccharide and peptide degradation. These unidirectional transitions were associated with repeated losses of marine signature genes and repeated gains of non-marine adaptive genes. This included various Na+-dependent transporters, osmolyte transporters and glycoside hydrolases (GH) for sulfated polysaccharide utilization in marine descendants, and in non-marine descendants genes for utilizing the land plant material pectin and genes facilitating terrestrial host interactions. The K+ scavenging ATPase was repeatedly gained whereas the corresponding low-affinity transporter repeatedly lost upon transitions, reflecting K+ ions are less available to non-marine bacteria. Strikingly, the central metabolism Na+-translocating NADH: quinone dehydrogenase gene was repeatedly gained in marine descendants, whereas the H+-translocating counterpart was repeatedly gained in non-marine lineages. Furthermore, GH genes were depleted in isolates colonizing animal hosts but abundant in bacteria inhabiting other non-marine niches; thus relative abundances of GH versus peptidase genes among Flavobacteriaceae lineages were inconsistent with the marine versus non-marine dichotomy. We suggest that phylogenomic analyses can cast novel light on mechanisms explaining the distribution and ecology of key microbiome components.  相似文献   

19.
Thraustochytrids, a group of osmoheterotrophic marine protists, have recently gained increased attention owing to their spectacular biotechnological potentials. They possess enormous capability of producing omega-3 (ω-3) polyunsaturated fatty acids (PUFAs) such as docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and several other bioactive metabolites, known to have nutritional implications in human health. They have emerged lately as an efficient economic alternative compared with other fish and algal oil sources by virtue of their simpler PUFA profiles and cost-effective culture conditions. This review is an attempt to summarize the ecological significance of thraustochytrids with an emphasis on their cultured and uncultured diversity from various marine habitats accounted during the last few decades. Moreover, improved technologies such as media optimization in conjugation with metabolic engineering, adopted for biotechnological advancement of ω-3 products of thraustochytrids are highlighted with particular concern on the respective fatty acid biosynthetic pathways. One of the future prospects focuses on utilization of thraustochytrids for biodiesel production owing to their tremendous potentiality of yielding low carbon monounsaturated fatty acids (LC-MUFAs). However, there is utmost need of in-depth diversity assessments from various oceanic ecosystems in order to gain insight on potential thraustochytrids for ameliorated employment toward biotechnological applications.  相似文献   

20.
For many species, climate oscillations drove cycles of population contraction during cool glacial periods followed by expansion during interglacials. Some groups, however, show evidence of uniform and synchronous expansion, while others display differences in the timing and extent of demographic change. We compared demographic histories inferred from genetic data across marine turtle species to identify responses to postglacial warming shared across taxa and to examine drivers of past demographic change at the global scale. Using coalescent simulations and approximate Bayesian computation (ABC), we estimated demographic parameters, including the likelihood of past population expansion, from a mitochondrial data set encompassing 23 previously identified lineages from all seven marine turtle species. For lineages with a high posterior probability of expansion, we conducted a hierarchical ABC analysis to estimate the proportion of lineages expanding synchronously and the timing of synchronous expansion. We used Bayesian model averaging to identify variables associated with expansion and genetic diversity. Approximately 60% of extant marine turtle lineages showed evidence of expansion, with the rest mainly exhibiting patterns of genetic diversity most consistent with population stability. For lineages showing expansion, there was a strong signal of synchronous expansion after the Last Glacial Maximum. Expansion and genetic diversity were best explained by ocean basin and the degree of endemism for a given lineage. Geographic differences in sensitivity to climate change have implications for prioritizing conservation actions in marine turtles as well as for identifying areas of past demographic stability and potential resilience to future climate change for broadly distributed taxa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号