首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The condyles of 72 aged and sexed Haida Indians were measured for anteroposterior and mediolateral diameter and their approximate areas calculated. Dental wear was assessed for the same individuals. Asymmetry of condyle size did not appear to change with age. In a pair-wise analysis, no relationship was found between the largest of a pair of condyles and the most worn side of the dentition. The difference in size between each pair of condyles (normalized for individual size) was plotted as a histogram and found to have a normal distribution with a mean of 0 and no skewness. Condyle asymmetry does not appear to be related to differential chewing forces but more closely fits the model of fluctuating asymmetry.  相似文献   

4.
5.
6.
The Megaladapidae have a posterior expansion of the articular surface of the mandibular condyle. Several other strepsirhine species exhibit a similar condylar surface. In this study, I propose two behavioral scenarios in which the posterior articular expansion might function: 1) contact with the postglenoid process and resistance to joint stress during browsing, and 2) movement against the postglenoid process during the fast closing and power strokes of mastication, as a consequence of large transverse jaw movements and associated with a strong mandibular symphysis. These models are evaluated through dissection of the TMJ in Lepilemur and from comparative anatomical observations on strepsirhines and ungulates. In Lepilemur the mandibular symphysis is unfused, but compared to the unfused symphyses of other strepsirhines is strengthened by interlocking bony projections (Beecher [1977] Am. J. Phys. Anthropol. 47:325–336). An accessory articular meniscus is found between the posterior articular expansion and the postglenoid process in Lepilemur, suggesting that significant movement occurs in this part of the TMJ. The symphysis is fused in adult specimens of Megaladapis. A posterior articular expansion is common among ungulates, and its presence is associated not with browsing but with symphyseal fusion. This supports the second model and suggests that the posterior articular expansion functions as a movement surface during mastication. Schwartz and Tattersall ([1987] J. Hum. Evol. 16:23–40) cite the posterior articular expansion as a synapomorphy uniting an Adapis-Leptadapis clade with a Megaladapidae-Daubentonia-Indridae clade. The comparative evidence suggests that the posterior articular expansion has evolved convergently in adapines, notharctines, megaladapids, hapalemurids, and indrids as part of a functional complex related to herbivory. However, close morphological similarity of the posterior articular expansion among genera within these strepsirhine subfamilies and families indicates that it is probably a reliable synapomorphy at lower taxonomic levels. Am J Phys Anthropol 103:263–276, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

7.
The aim of this study is to mathematically approximate the shape of the femoral articulating line and compare radiuses of condylar curves within and between males and females. Ten male and ten female participants were included in the study. Radiuses of medial and lateral condylar curves were calculated from the side view knee X-ray by original mathematical equation. Average radiuses of condylar curves were between 4.5 and 1.7 cm medially, and between 3.2 and 1.8 cm laterally, for 0 degrees and 90 degrees flexion contact point respectively. Males had longer curve radiuses of both condyles (p < 0.05). Differences turned out to be statistically insignificant after adjusting to body height. Even small changes in the joint geometry during lifetime could make a joint susceptible to osteoarthritis or injuries. Approximation of the radiuses of femoral condyle curves is a useful method in anthropometric, radiological and virtual calculations of the knee geometry, and other ellipsoidal structures in human body, like wrist, scull segments, dental arches, etc.  相似文献   

8.
Eighty-eight Long Evans/Turku rats were used in the study. The effect of the articulatory function on the mandibular condyle was observed histologically during normal growth, when the rat is changing its diet from milk to whole pellets as a part of weaning. Six animals each were killed at the age of 10, 15, 20, 25, 30, 35, 40 and 50 days for histological tissue processing. For further information, 30 animals were fed a soft diet (6 animals each were killed at the age of 25, 30, 35, 40 and 50 days), and 10 animals were fed hardened pellets (2 animals each were killed at the ages of 25, 30, 35, 40 and 50 days). An even and regular transition from mesenchymal cells via immature chondroblasts into mature chondroblasts and hypertrophied chondrocytes was found at 10, 15 and 20 days during normal growth and also at 25, 30, 35, 40 and 50 days when animals were fed a soft diet. This maturing process appeared to be disturbed at the age of 25, 30, 35 and 40 days in the superior aspect of the condyle in animals fed ordinary pellets. The density of the mesenchymal cell layer was decreased, and the amount of intercellular matrix seemed to be evaluated in mesenchymal and intermediate cell layers. These features were later manifest deeper in the cartilage as acellular regions and as cell clusters. The changes were similar but more severe when the animals were fed hardened pellets.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
10.
11.
New aspects of the histology of the mandibular condyle in the rat   总被引:1,自引:0,他引:1  
T Kantomaa 《Acta anatomica》1986,126(4):218-222
The function of the multipotential mesenchymal cells in the mandibular condyle was studied histochemically and histologically in 27 Long Evans/Turku rats. Sagittal sections from the temporomandibular joint were stained with haematoxylin and eosin, toluidine blue, or van Gieson's stain. A weakly orthochromatically stained fibrous layer was followed in the upper region by a weakly metachromatically stained mesenchymal cell layer. Deep within this was a strongly metachromatically stained layer of immature chondroblasts. The metachromasia of the matrix of these layers disappeared abruptly in an anterior direction and gradually in a posterior direction. The changes in the staining reactions are explained by the fact that mesenchymal cells can differentiate into chondrogenic or osteogenic cells depending on the environmental conditions. A new hypothesis is presented according to which regulation of the direction of condylar growth is achieved by choosing the cells for chondrogenesis more posteriorly or anteriorly from among the mesenchymal cells covering the whole condylar cartilage.  相似文献   

12.
Strepsirrhine and haplorhine primates exhibit highly derived features of the visual system that distinguish them from most other mammals. Comparative data link the evolution of these visual specializations to the sequential acquisition of nocturnal visual predation in the primate stem lineage and diurnal visual predation in the anthropoid stem lineage. However, it is unclear to what extent these shifts in primate visual ecology were accompanied by changes in eye size and shape. Here we investigate the evolution of primate eye morphology using a comparative study of a large sample of mammalian eyes. Our analysis shows that primates differ from other mammals in having large eyes relative to body size and that anthropoids exhibit unusually small corneas relative to eye size and body size. The large eyes of basal primates probably evolved to improve visual acuity while maintaining high sensitivity in a nocturnal context. The reduced corneal sizes of anthropoids reflect reductions in the size of the dioptric apparatus as a means of increasing posterior nodal distance to improve visual acuity. These data support the conclusion that the origin of anthropoids was associated with a change in eye shape to improve visual acuity in the context of a diurnal predatory habitus.  相似文献   

13.
14.
The lophophorate phylum Phoronida consists of about 13 species, which differ in body length and width, number of longitudinal muscles, lophophore geometry and number of lophophore tentacles. In absolute terms large species have a larger body width, more tentacles, more longitudinal muscles and greater coiling of the lophophore than small species. However, size and shape analyses suggest that with increasing size: (I) the body surface area to volume ratio increases because body length increases faster than body width; (2) the relative number longitudinal muscles decreases, and (3) the relative feeding surface area of the lophophore decreases because tentacle diameter is constant while tentacle number increases at the same rate as body length and tentacle length increases more slowly than tentacle number. Coiling and spiraling of the lophophore in large species may be an attempt to compensate for this last relationship. We suggest that the habits, mode of growth and feeding mechanism of phoronids constrain size-related changes in shape.  相似文献   

15.
16.
To determine the postnatal structural changes due to increasing articular activity, we have compared the development of the posterior and posterosuperior superficial layers of the rat mandibular condylar cartilage by electron microscopy. In contrast to the uniform development posteriorly, the posterosuperior articular zone showed an extensive remodelling process with collagen breakdown and replacement between the ages of 21 and 28 days, i.e. during weaning. Enlarged spheroid fibroblasts contained numerous micropynocytotic vesicles, collagen debris enclosing vacuoles and a nuclear fibrous lamina enveloping the nucleus; abundant electron-dense amorphous material was present in the matrix as well as covering the surface. An increased number of metabolically active fibroblasts was supplied by the mesenchymal stem cells of the underlying chondrogenic zone. The adaptation process resulted in the replacement of small randomly oriented collagen fibers by large compact bundles running parallel to the glenoid fossa, providing protection to the condyle against excessive wear and tear during incisal biting and grinding. The direct local relationship between (ultra) structure and functional load can be utilized in experimental research on the role of biomechanical forces in mandibular condylar growth and development.  相似文献   

17.
Measurements were taken on skulls of 253 adult female anthropoid primates from 32 species, in order to determine patterns and possible causes for variation among species in the cross-sectional size and shape of the mandibular corpus under M1. When all 32 species are considered as a group, there is a tendency for corpus shape to become more robust with increasing body size. However, this does not hold for colobines or cercopithecines evaluated separately. When diets are classified into the general categories of folivory or frugivory, neither size-adjusted measurements of mandibular corpus breadth and height, nor estimates of the second moments of inertia or the polar moment of inertia of the mandibular cross section, show any relationship to dietary variation among species. Species reported to include hard nuts in their diets have larger mandibular cross sections than other species, and the size of the corpus is significantly correlated with size of the dentition and molar enamel thickness. A biomechanical model taking into account frictional effects of tooth-to-tooth contact indicates that mandibular corpus robusticity may not be related to a large horizontal component of force during mastication.  相似文献   

18.
While studies of canine dimorphism in primates are common, only a few have examined canine tooth size independently within each sex. Recently, Greenfield and Washburn (Am. J. Phys. Anthropol. 84:17–34, 1991) proposed that there are two types of male canines which reflect different allometric scaling patterns of canine crown height against canine occlusal dimensions. They also suggest that proportional canine shape, measured as canine crown height (or projection) relative to the occlusal dimensions, provides an estimate of the canine's function as a weapon, though they provide no test of this hypothesis. This analysis critically examines the claim that there are two types of male canines among anthropoids. It then tests the hypothesis that relative male canine size (measured against body weight) and proportional canine shape are related to estimates of intermale competition, diet, and substrate (used as a surrogate measure of predation pressure). While there is strong taxonomic variation in canine size and shape among male anthropoids, no evidence is found for two discrete canine types. Rather, within families and subfamilies, canine dimensions scale isometrically against body weight and against each other, with a continuum of canine shapes among different taxa. While variation in male canine size is associated with intermale competition and substrate, even when taxonomic variation is controlled, variation in proportional canine shape is not. Neither canine size nor shape are generally associated with variation in diet. © 1993 Wiley-Liss, Inc.  相似文献   

19.
Molars are highly integrated biological structures that have been used for inferring evolutionary relationships among taxa. However, parallel and convergent morphological traits can be affected by developmental and functional constraints. Here, we analyze molar shapes of platyrrhines in order to explore if platyrrhine molar diversity reflects homogeneous patterns of molar variation and covariation. We digitized 30 landmarks on mandibular first and second molars of 418 extant and 11 fossil platyrrhine specimens to determine the degree of integration of both molars when treated as a single module. We combined morphological and phylogenetic data to investigate the phylogenetic signal and to visualize the history of molar shape changes. All platyrrhine taxa show a common shape pattern suggesting that a relatively low degree of phenotypic variation is caused by convergent evolution, although molar shape carries significant phylogenetic signal. Atelidae and Pitheciidae show high levels of integration with low variation between the two molars, whereas the Cebinae/Saimiriinae, and especially Callitrichinae, show greater variation between molars and trend toward a modular organization. We hypothesize that biomechanical constraints of the masticatory apparatus, and the dietary profile of each taxon are the main factors that determine high covariation in molars. In contrast, low molar shape covariation may result from the fact that each molar exhibits a distinct ecological signal, as molars can be exposed to distinct occlusal loadings during food processing, suggesting that different selective pressures on molars can reduce overall molar integration.  相似文献   

20.
The mandibular condyle is considered a good model for developing cancellous bone because of its rapid growth and high rate of remodeling. The aim of the present study was to analyze the simultaneous changes in microarchitecture and mineralization of cancellous bone during development in a three-dimensional fashion. Eight mandibular condyles of pigs aged 8 weeks prepartum to 108 weeks postpartum were scanned using microCT with an isotropic spatial resolution of 10 microm. The number of trabeculae decreased during development, whereas both the trabecular thickness and the distance between the trabeculae increased. The bone surface to volume ratio decreased during development, possibly limiting the amount of (re)modeling. Both the mean degree of mineralization and intratrabecular differences in mineralization between the surfaces and cores of trabecular elements increased during development. The trabecular surfaces were more highly mineralized in the older condyles compared to the younger ones. Together with the observed decrease in the relative size of trabecular surface, this finding suggests a decrease in (re)modeling activity during development. In accordance with the general growth and development of the pig, it was concluded that most developmental changes in cancellous bone occur until the age of 40 weeks postpartum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号