首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Yang  Yanyan  Zhao  Lei  Li  Na  Dai  Congwei  Yin  Nan  Chu  Zhaoping  Duan  Xiaoyan  Niu  Xiaoli  Yan  Ping  Lv  Peiyuan 《Neurochemical research》2020,45(9):2100-2112

Vascular dementia (VD) is a clinical syndrome of acquired cognitive dysfunction caused by various cerebrovascular factors. Estrogen is a steroid hormone involved in promoting neuronal survival and in regulating many signaling pathways. However, the mechanism by which it confers neuroprotective effects in VD remains unclear. Here, we aimed to investigate the effect of estrogen on neuronal injury and cognitive impairment in VD rats. Adult female rats were randomly divided into four groups (sham, model, estrogen early and estrogen later treatment) and received sham surgery or bilateral ovariectomy and permanent occlusion of bilateral common carotid arteries (BCCAO). The early treatment group received daily intraperitoneal injections of 17β-estradiol (100 µg/kg/day) for 8 weeks starting the day after BCCAO. The later treatment group was administered the same starting 1 week after BCCAO. Learning and memory functions were assessed using the Morris water maze. Morphological changes within the hippocampal CA1 region were observed by hematoxylin/eosin staining and electron microscopy. Expression of proteins associated with autophagy and signaling were detected by immunohistochemical staining and Western blot. We found that estrogen significantly alleviated cognitive damage and neuronal injury and reduced the expression of Beclin1 and LC3B, indicating a suppression of autophagy. Moreover, estrogen enhanced expression of β-catenin and Cyclin D1, while reducing glycogen synthase kinase 3β, suggesting activation of Wnt/β-catenin signaling. These results indicate that estrogen ameliorates learning and memory deficiencies in VD rats, and that this neuroprotective effect may be explained by the suppression of autophagy and activation of Wnt/β-catenin signaling.

  相似文献   

3.
4.
Sequential proliferation, hypertrophy and maturation of chondrocytes are required for proper endochondral bone development and tightly regulated by cell signaling. The canonical Wnt signaling pathway acts through β-catenin to promote chondrocyte hypertrophy whereas PTHrP signaling inhibits it by holding chondrocytes in proliferating states. Here we show by genetic approaches that chondrocyte hypertrophy and final maturation are two distinct developmental processes that are differentially regulated by Wnt/β-catenin and PTHrP signaling. Wnt/β-catenin signaling regulates initiation of chondrocyte hypertrophy by inhibiting PTHrP signaling activity, but it does not regulate PTHrP expression. In addition, Wnt/β-catenin signaling regulates chondrocyte hypertrophy in a non-cell autonomous manner and Gdf5/Bmp signaling may be one of the downstream pathways. Furthermore, Wnt/β-catenin signaling also controls final maturation of hypertrophic chondrocytes, but such regulation is PTHrP signaling-independent.  相似文献   

5.

Background

Cardiac induction, the first step in heart development in vertebrate embryos, is thought to be initiated by anterior endoderm during gastrulation, but what the signals are and how they act is unknown. Several signaling pathways, including FGF, Nodal, BMP and Wnt have been implicated in cardiac specification, in both gain- and loss-of-function experiments. However, as these pathways regulate germ layer formation and patterning, their specific roles in cardiac induction have been difficult to define.

Methodology/Principal Findings

To investigate the mechanisms of cardiac induction directly we devised an assay based on conjugates of anterior endoderm from early gastrula stage Xenopus embryos as the inducing tissue and pluripotent ectodermal explants as the responding tissue. We show that the anterior endoderm produces a specific signal, as skeletal muscle is not induced. Cardiac inducing signal needs up to two hours of interaction with the responding tissue to produce an effect. While we found that the BMP pathway was not necessary, our results demonstrate that the FGF and Nodal pathways are essential for cardiogenesis. They were required only during the first hour of cardiogenesis, while sustained activation of ERK was required for at least four hours. Our results also show that transient early activation of the Wnt/β-catenin pathway has no effect on cardiogenesis, while later activation of the pathway antagonizes cardiac differentiation.

Conclusions/Significance

We have described an assay for investigating the mechanisms of cardiac induction by anterior endoderm. The assay was used to provide evidence for a direct, early and transient requirement of FGF and Nodal pathways. In addition, we demonstrate that Wnt/β-catenin pathway plays no direct role in vertebrate cardiac specification, but needs to be suppressed just prior to differentiation.  相似文献   

6.
Deviation from proper muscle development or homeostasis results in various myopathic conditions. Employing genetic as well as chemical intervention, we provide evidence that a tight regulation of Wnt/β-catenin signaling is essential for muscle fiber growth and maintenance. In zebrafish embryos, gain-of-Wnt/β-catenin function results in unscheduled muscle progenitor proliferation, leading to slow and fast muscle hypertrophy accompanied by fast muscle degeneration. The effects of Wnt/β-catenin signaling on fast muscle hypertrophy were rescued by misexpression of Myostatin or p21CIP/WAF, establishing an in vivo regulation of myofibrillogenesis by Wnt/β-catenin signaling and Myostatin. Epistatic analyses suggest a possible genetic interaction between Wnt/β-catenin and Myostatin in regulation of slow and fast twitch muscle myofibrillogenesis.  相似文献   

7.
Wnt/β-catenin signaling orchestrates a number of critical events including cell growth, differentiation, and cell survival during development. Misregulation of this pathway leads to various human diseases, specifically cancers. Endocytosis and phosphorylation of the LDL receptor-related protein 6 (LRP6), an essential co-receptor for Wnt/β-catenin signaling, play a vital role in mediating Wnt/β-catenin signal transduction. However, its regulatory mechanism is not fully understood. In this study, we define the mechanisms by which LRP6 endocytic trafficking regulates Wnt/β-catenin signaling activation. We show that LRP6 mutant with defective tyrosine-based signal in its cytoplasmic tail has an increased cell surface distribution and decreased endocytosis rate. These changes in LRP6 endocytosis coincide with an increased distribution to caveolae, increased phosphorylation, and enhanced Wnt/β-catenin signaling. We further demonstrate that treatment of Wnt3a ligands or blocking the clathrin-mediated endocytosis of LRP6 leads to a redistribution of wild-type receptor to lipid rafts. The LRP6 tyrosine mutant also exhibited an increase in signaling activation in response to Wnt3a stimulation when compared with wild-type LRP6, and this activation is suppressed when caveolae-mediated endocytosis is blocked. Our results reveal molecular mechanisms by which LRP6 endocytosis routes regulate its phosphorylation and the strength of Wnt/β-catenin signaling, and have implications on how this pathway can be modulated in human diseases.  相似文献   

8.
9.
Flavonoids are plant-derived polyphenolic molecules that have potential biological effects including anti-oxidative, anti-inflammatory, anti-viral, and anti-tumoral effects. These effects are related to the ability of flavonoids to modulate signaling pathways, such as the canonical Wnt signaling pathway. This pathway controls many aspects of embryonic development and tissue maintenance and has been found to be deregulated in a range of human cancers. We performed several in vivo assays in Xenopus embryos, a functional model of canonical Wnt signaling studies, and also used in vitro models, to investigate whether isoquercitrin affects Wnt/β-catenin signaling. Our data provide strong support for an inhibitory effect of isoquercitrin on Wnt/β-catenin, where the flavonoid acts downstream of β-catenin translocation to the nuclei. Isoquercitrin affects Xenopus axis establishment, reverses double axes and the LiCl hyperdorsalization phenotype, and reduces Xnr3 expression. In addition, this flavonoid shows anti-tumoral effects on colon cancer cells (SW480, DLD-1, and HCT116), whereas exerting no significant effect on non-tumor colon cell (IEC-18), suggesting a specific effect in tumor cells in vitro. Taken together, our data indicate that isoquercitrin is an inhibitor of Wnt/β-catenin and should be further investigated as a potential novel anti-tumoral agent.  相似文献   

10.
Resveratrol, a natural polyphenolic compound, is abundantly found in plant foods and has been extensively studied for its anti-cancer properties. Given the important role of CSCs (Cancer Stem Cells) in breast tumorigenesis and progression, it is worth investigating the effects of resveratrol on CSCs. The article is an attempt to investigate the effects of resveratrol on breast CSCs. Resveratrol significantly inhibits the proliferation of BCSCs (breast cancer stem-like cells) isolated from MCF-7 and SUM159, and decreased the percentage of BCSCs population, consequently reduced the size and number of mammospheres in non-adherent spherical clusters. Accordingly, the injection of resveratrol (100 mg/kg/d) in NOD/SCID (nonobese diabetic/severe combined immunodeficient) mice effectively inhibited the growth of xenograft tumors and reduced BCSC population in tumor cells. After the reimplantation of primary tumor cells into the secondary mice for 30 d, all 6 control inoculations produced tumors, while tumor cells derived from resveratrol-treated mice only caused 1 tumor of 6 inoculations. Further studies by TEM (Transmission electron microscopy) analysis, GFP-LC3-II puncta formation assay and western blot for LC3-II, Beclin1 and Atg 7, showed that resveratrol induces autophagy in BCSCs. Moreover, resveratrol suppresses Wnt/β-catenin signaling pathway in BCSCs; over-expression of β-catenin by transfecting the plasmid markedly reduced resveratrol-induced cytotoxicity and autophagy in BCSCs. Our findings indicated that resveratrol inhibits BCSCs and induces autophagy via suppressing Wnt/β-catenin signaling pathway.  相似文献   

11.
12.
13.
14.
Glioblastoma, the most common and aggressive primary brain tumors, carry a bleak prognosis and often recur even after standard treatment modalities. Emerging evidence suggests that deregulation of the Wnt/β-catenin/Tcf signaling pathway contributes to glioblastoma progression. Nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit tumor cell proliferation by suppressing Wnt/β-catenin/Tcf signaling in various human malignancies. In this study, we sought to inhibit Wnt/β-catenin/Tcf signaling in glioblastoma cells by the NSAIDs diclofenac and celecoxib. Both diclofenac and celecoxib significantly reduced the proliferation, colony formation and migration of human glioblastoma cells. Diclofenac and celecoxib downregulated β-catenin/Tcf reporter activity. Western and qRT-PCR analysis showed that diclofenac and celecoxib reduced the expression of β-catenin target genes Axin2, cyclin D1 and c-Myc. In addition, the cytoplasmic accumulation and nuclear translocation of β-catenin was significantly reduced following diclofenac and celecoxib treatment. Furthermore, diclofenac and celecoxib significantly increased phosphorylation of β-catenin and reduced the phosphorylation of GSK3β. These results clearly indicated that diclofenac and celecoxib are potential therapeutic agents against glioblastoma cells that act by suppressing the activation of Wnt/β-catenin/Tcf signaling.  相似文献   

15.
16.
17.
MicroRNAs are known to play an important role in modulating gene expression in various diseases including cancers and cardiovascular disorders, but only a few of them are associated with the pathology of aflatoxin B1 (AFB1), a potent mycotoxin. Here, we discovered a novel regulatory network between AFB1, miR-33a and β-catenin in human carcinoma cells. The level of miR-33a was up-regulated in hepatocellular carcinoma (HCC) cells treated with AFB1, while in the same cells causing the decrease in β-catenin expression when treated at their IC50 values. miR-33a, specifically miR-33a-5p, was demonstrated to down-regulate the expression of β-catenin, affect the β-catenin pathway, and inhibit cell growth. Also, by employing a luciferase assay, we found that miR-33a down-regulated β-catenin by directly binding to the 3’-UTR of β-catenin. These results suggested that AFB1 might down-regulate β-catenin by up-regulating miR-33a. This understanding opens new lines of thought in the potential role of miR-33a in the clinical therapy of cancer.  相似文献   

18.
The transport of monocarboxylate fuels such as lactate, pyruvate, and ketone bodies across brain endothelial cells is mediated by monocarboxylic acid transporter 1 (MCT1). Although the canonical Wnt/β-catenin pathway is required for rodent blood-brain barrier development and for the expression of associated nutrient transporters, the role of this pathway in the regulation of brain endothelial MCT1 is unknown. Here we report expression of nine members of the frizzled receptor family by the RBE4 rat brain endothelial cell line. Furthermore, activation of the canonical Wnt/β-catenin pathway in RBE4 cells via nuclear β-catenin signaling with LiCl does not alter brain endothelial Mct1 mRNA but increases the amount of MCT1 transporter protein. Plasma membrane biotinylation studies and confocal microscopic examination of mCherry-tagged MCT1 indicate that increased transporter results from reduced MCT1 trafficking from the plasma membrane via the endosomal/lysosomal pathway and is facilitated by decreased MCT1 ubiquitination following LiCl treatment. Inhibition of the Notch pathway by the γ-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester negated the up-regulation of MCT1 by LiCl, demonstrating a cross-talk between the canonical Wnt/β-catenin and Notch pathways. Our results are important because they show, for the first time, the regulation of MCT1 in cerebrovascular endothelial cells by the multifunctional canonical Wnt/β-catenin and Notch signaling pathways.  相似文献   

19.
20.
Aluminum (Al) exposure inhibits bone formation. Osteoblastic proliferation promotes bone formation. Therefore, we inferred that Al may inhibit bone formation by the inhibition of osteoblastic proliferation. However, the effects and molecular mechanisms of Al on osteoblastic proliferation are still under investigation. Osteoblastic proliferation can be regulated by Wnt/β-catenin signaling pathway. To investigate the effects of Al on osteoblastic proliferation and whether Wnt/β-catenin signaling pathway is involved in it, osteoblasts from neonatal rats were cultured and exposed to 0, 0.4 mM (1/20 IC50), 0.8 mM (1/10 IC50), and 1.6 mM (1/5 IC50) of aluminum trichloride (AlCl3) for 24 h, respectively. The osteoblastic proliferation rates; Wnt3a, lipoprotein receptor-related protein 5 (LRP-5), T cell factor 1 (TCF-1), cyclin D1, and c-Myc messenger RNA (mRNA) expressions; and p-glycogen synthase kinase 3β (GSK3β), GSK3β, and β-catenin protein expressions indicated that AlCl3 inhibited osteoblastic proliferation and downregulated Wnt/β-catenin signaling pathway. In addition, the AlCl3 concentration was negatively correlated with osteoblastic proliferation rates and the mRNA expressions of Wnt3a, c-Myc, and cyclin D1, while the osteoblastic proliferation rates were positively correlated with mRNA expressions of Wnt3a, c-Myc, and cyclin D1. Taken together, these findings indicated that AlCl3 inhibits osteoblastic proliferation may be associated with the inactivation of Wnt/β-catenin signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号