共查询到20条相似文献,搜索用时 0 毫秒
1.
Land plants have evolved aliphatic biopolymers that protect their cell surfaces against dehydration, pathogens, and chemical and physical damage. In flowering plants, a critical event during pollen maturation is the formation of the pollen surface structure. The pollen wall consists essentially of the microspore-derived intine and the sporophyte-derived exine. The major component of the exine is termed sporopollenin, a complex biopolymer. The chemical composition of sporopollenin remains poorlycharacterized because it is extremely resistant to chemical and biological degradation procedures. Recent characterization of Arabidopsis thaliana genes and corresponding enzymes involved in exine formation has demonstrated that the sporopollenin polymer consists of phenolic and fatty acid-derived constituents that are covalently coupled by ether and ester linkages. This review illuminates the outlines of a biosynthetic pathway involved in generating monomer constituents of the sporopollenin biopolymer component of the pollen wall. 相似文献
2.
Maize liquid endosperm extracts contain the enzymes necessary for all of the steps of the plant IAA biosynthetic pathway from tryptophan, and provide a means to assay the pathway in vitro. We have analyzed the reactions in the presence of a series of indole and indole-like analogues in order to evaluate the potential of these compounds to act as inhibitors of IAA biosynthesis. Such inhibitors will be useful to investigate the tryptophan to IAA pathway, to determine the precursors and intermediates involved, and to select for mutants in this process. A number of such compounds were tested using in vitro enzyme assays for both the tryptophan dependent IAA biosynthesis pathway and for tryptophan synthase activity. Some compounds showed strong inhibition of IAA biosynthesis while having only a slight effect on the reaction rate of tryptophan synthase . These results: (1) show that IAA biosynthesis can be selectively inhibited relative to tryptophan biosynthesis; (2) suggest potential ways to screen for IAA biosynthetic pathway mutations in plants; and (3) provide additional tools for studies of IAA biosynthesis in plants. 相似文献
3.
D. W. James Jr. H. K. Dooner 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1991,82(4):409-412
Summary The seed fatty acid (FA) composition of various single mutant combinations ofArabidopsis thaliana that affect FA biosynthesis has been examined. Double mutant combinations offae, a mutation affecting CIS elongation, and a series of four other FA biosynthetic mutants were synthesized. The four other single mutants were:fad2 andfad3, which are deficient in 181 and 182 desaturation, respectively;fab1, which is elevated in 160 and decreased in 181; andfab2, which is elevated in 180 and decreased in 181. The superimposition of two blocks in the FA biosynthetic pathway leads to dramatic changes in the FA content of the double mutants. The tenArabidopsis stocks analyzed to date (wild-type, five single mutants, and four double mutants) make seed oils with a wide range of FA compositions, and illustrate the diversity of oils it is possible to obtain from a single plant species. 相似文献
4.
5.
G. A. Pozhvanov A. L. Shavarda S. S. Medvedev 《Russian Journal of Plant Physiology》2013,60(3):431-436
In the study of auxin transport, transgenic constructs, including DR5::GUS, are widely used for visualization of phytohormone localization. Previously we proposed a method for quantitative evaluation of the IAA content by histochemical staining for glucuronidase activity. In this work, this method was complemented by quantitative data on the content of IAA in plants obtained by gas chromatography-mass spectrometry (GC/MS), which allowed more accurate characterization of the lateral IAA gradient arising at the Arabidopsis thaliana (L.) Heynh (ecotype Columbia 0) root gravistimulation. Applied method of IAA analysis, combining GC/MS and histochemistry, can be used for quantitatification of the other plant hormone distribution in transgenic plants with the GUS reporter. 相似文献
6.
7.
8.
Tryptophan biosynthetic enzyme levels in wild-type Vibrio harveyi and a number of tryptophan auxotrophs of this species were coordinately regulated over a 100-fold range of specific activities. The tryptophan analog indoleacrylic acid evoked substantial derepression of the enzymes in wild-type cells. Even higher enzyme levels were attained in auxotrophs starved for tryptophan, regardless of the location of the block in the pathway. A derepressed mutant selected by resistance to 5-fluorotryptophan was found to have elevated basal levels of trp gene expression; these basal levels were increased only two- to threefold by tryptophan limitation. The taxonomic implications of these and other biochemical results support previous suggestions that the marine luminous bacteria are more closely related to enteric bacteria than to other gram-negative taxa. 相似文献
9.
10.
M N Beremand 《Applied and environmental microbiology》1987,53(8):1855-1859
Mutants of Fusarium sporotrichioides NRRL 3299 that were blocked or altered in the biosynthesis of the trichothecene T-2 toxin were generated by UV treatment and identified by a rapid screen in which monoclonal antibodies to T-2 were used. Three stable mutants were isolated and chemically characterized. Two mutants accumulated diacetoxyscirpenol, which suggests that they were defective in the step required for the addition of a hydroxyl group to the C-8 position in the trichothecene core structure. The third mutant appeared to be partially blocked at an early step or regulatory point in the pathway. This represents the first isolation of mutants in a trichothecene biosynthetic pathway. 相似文献
11.
12.
Sekine Masami; Ichikawa Takanari; Kuga Nobumi; Kobayashi Masatomo; Sakurai Akira; Syono Kunihiko 《Plant & cell physiology》1988,29(5):867-874
The IAA biosynthetic pathway of tryptophan to IAA via IAM wasdetected in Bradyrhizobium spp. (slow-growing Rhizobium) butnot in Rhizobium spp. (fast-growing Rhizobium). A simple methodusing rapid HPLC analysis to measure the conversion from NAMto NAA was developed to detect indole-3-acetamide hydrolaseactivity in cultures of bacteria. Most of the Bradyrhizobiumstrains produce large amounts of NAA converted from NAM underour assay conditions. In addition, GC/MS analysis of purifiedextracts from cultures of B.japonicum wild-type strain J1063,grown in a tryptophan-supplemented liquid medium, demonstratedthe presence of IAM and IAA. The results strongly suggest thatbiosynthesis of IAA in Bradyrhizobium spp. involves the samepathway as that operating in Pseudomonas savastanoi and Agrobacteriumtumefaciens. (Received December 25, 1988; Accepted May 18, 1988) 相似文献
13.
Arabidopsis sfd mutants affect plastidic lipid composition and suppress dwarfing, cell death, and the enhanced disease resistance phenotypes resulting from the deficiency of a fatty acid desaturase
下载免费PDF全文

A loss-of-function mutation in the Arabidopsis SSI2/FAB2 gene, which encodes a plastidic stearoyl-acyl-carrier protein desaturase, has pleiotropic effects. The ssi2 mutant plant is dwarf, spontaneously develops lesions containing dead cells, accumulates increased salicylic acid (SA) levels, and constitutively expresses SA-mediated, NPR1-dependent and -independent defense responses. In parallel, jasmonic acid-regulated signaling is compromised in the ssi2 mutant. In an effort to discern the involvement of lipids in the ssi2-conferred developmental and defense phenotypes, we identified suppressors of fatty acid (stearoyl) desaturase deficiency (sfd) mutants. The sfd1, sfd2, and sfd4 mutant alleles suppress the ssi2-conferred dwarfing and lesion development, the NPR1-independent expression of the PATHOGENESIS-RELATED1 (PR1) gene, and resistance to Pseudomonas syringae pv maculicola. The sfd1 and sfd4 mutant alleles also depress ssi2-conferred PR1 expression in NPR1-containing sfd1 ssi2 and sfd4 ssi2 plants. By contrast, the sfd2 ssi2 plant retains the ssi2-conferred high-level expression of PR1. In parallel with the loss of ssi2-conferred constitutive SA signaling, the ability of jasmonic acid to activate PDF1.2 expression is reinstated in the sfd1 ssi2 npr1 plant. sfd4 is a mutation in the FAD6 gene that encodes a plastidic omega6-desaturase that is involved in the synthesis of polyunsaturated fatty acid-containing lipids. Because the levels of plastid complex lipid species containing hexadecatrienoic acid are depressed in all of the sfd ssi2 npr1 plants, we propose that these lipids are involved in the manifestation of the ssi2-conferred phenotypes. 相似文献
14.
Mutations in >30 genes that regulate different pathways and developmental processes are reported to cause a melanotic phenotype in larvae. The observed melanotic masses were generally linked to the hemocyte-mediated immune response. To investigate whether all black masses are associated with the cellular immune response, we characterized melanotic masses from mutants in 14 genes. We found that the melanotic masses can be subdivided into melanotic nodules engaging the hemocyte-mediated encapsulation and into melanizations that are not encapsulated by hemocytes. With rare exception, the encapsulation is carried out by lamellocytes. Encapsulated nodules are found in the hemocoel or in association with the lymph gland, while melanizations are located in the gut, salivary gland, and tracheae. In cactus mutants we found an additional kind of melanized mass containing various tissues. The development of these tissue agglomerates is dependent on the function of the dorsal gene. Our results show that the phenotype of each mutant not only reflects its connection to a particular genetic pathway but also points to the tissue-specific role of the individual gene. 相似文献
15.
Diverse biochemical properties of Shp2 mutants. Implications for disease phenotypes 总被引:16,自引:0,他引:16
Keilhack H David FS McGregor M Cantley LC Neel BG 《The Journal of biological chemistry》2005,280(35):30984-30993
Mutations in the Src homology 2 (SH2)-containing protein-tyrosine phosphatase Shp2 (PTPN11) underlie half of the cases of the autosomal dominant genetic disorder Noonan syndrome, and somatic Shp2 mutations are found in several hematologic and solid malignancies. Earlier studies of small numbers of mutants suggested that disease-associated mutations cause constitutive (SH2 binding-independent) activation and that cancer-associated mutants are more active than those associated with Noonan syndrome. We have characterized a larger panel of Shp2 mutants and find that this "activity-centric" model cannot explain the behaviors of all pathogenic Shp2 mutations. Instead, enzymatic, structural, and mathematical modeling analyses show that these mutants can affect basal activation, SH2 domain-phosphopeptide affinity, and/or substrate specificity to varying degrees. Furthermore, there is no absolute correlation between the mutants' extents of basal activation and the diseases they induce. We propose that activated mutants of Shp2 modulate signaling from specific stimuli to a subset of effectors and provide a theoretical framework for understanding the complex relationship between Shp2 activation, intracellular signaling, and pathology. 相似文献
16.
17.
Isolation and characterization of mutants blocked in T-2 toxin biosynthesis. 总被引:1,自引:8,他引:1
下载免费PDF全文

M N Beremand 《Applied microbiology》1987,53(8):1855-1859
Mutants of Fusarium sporotrichioides NRRL 3299 that were blocked or altered in the biosynthesis of the trichothecene T-2 toxin were generated by UV treatment and identified by a rapid screen in which monoclonal antibodies to T-2 were used. Three stable mutants were isolated and chemically characterized. Two mutants accumulated diacetoxyscirpenol, which suggests that they were defective in the step required for the addition of a hydroxyl group to the C-8 position in the trichothecene core structure. The third mutant appeared to be partially blocked at an early step or regulatory point in the pathway. This represents the first isolation of mutants in a trichothecene biosynthetic pathway. 相似文献
18.
Specificity and similarity of functions of the Aux/IAA genes in auxin signaling of Arabidopsis revealed by promoter-exchange experiments among MSG2/IAA19, AXR2/IAA7, and SLR/IAA14
下载免费PDF全文

As indicated by various and some overlapped phenotypes of the dominant mutants, the Aux/IAA genes of Arabidopsis (Arabidopsis thaliana) concomitantly exhibit a functional similarity and differentiation. To evaluate the contributions of their expression patterns determined by promoter activity and molecular properties of their gene products to Aux/IAA function, we examined phenotypes of transgenic plants expressing the green fluorescent protein (GFP)-tagged msg2-1/iaa19, axr2-1/iaa7, or slr-1/iaa14 cDNA by the MSG2 or AXR2 promoter. When driven by the MSG2 promoter (pMSG2), each GFP-tagged cDNA caused the msg2-1 phenotype, that is, the wild-type stature in the mature-plant stage, long and straight hypocotyls in the dark, reduced lateral root formation, relatively mild agravitropic traits in hypocotyls, and a normal gravitropic response in roots. However, development of one or two cotyledonary primordia was often arrested in embryogenesis of the pMSG2::axr2-1::GFP and pMSG2::slr-1::GFP plants, resulting in monocotyledonary or no cotyledonary seedlings. Such defects in embryogenesis were never seen in pMSG2::msg2-1::GFP or the msg2-1, axr2-1, or slr-1 mutant. The MSG2 promoter-GUS staining showed that expression of MSG2 started specifically in cotyledonary primordia of the triangular-stage embryos. When driven by the AXR2 promoter (pAXR2), each GFP-tagged mutant cDNA caused, in principle, aberrant aboveground phenotypes of the corresponding dominant mutant. However, either the axr2-1::GFP or slr-1::GFP cDNA brought about dwarf, agravitropic stems almost identical to those of axr2-1, and the pAXR2::msg2-1::GFP and pAXR2::slr-1::GFP hypocotyls exhibited complete loss of gravitropism as did axr2-1. These results showed functional differences among the msg2-1, axr2-1, and slr-1 proteins, though some phenotypes were determined by the promoter activity. 相似文献
19.
Summary The status of de novo pyrimidine synthesis in the dp mutant of Drosophila melanogaster was examined by measuring the activity of the rate-limiting orotate phosphribosyl transferase (OPRT) enzyme. Activity is significantly elevated in late third instar larvae of 5 different dp mutant strains. A more detailed analysis of a dpovc allele has shown that this elevation arises at about mid-larval life and persists until pupation.A low nucleotide diet causes a depression in OPRT activity in dpovc larvae which can be reversed by dietary supplementation of uracil. However, neither the low nucleotide diet nor uracil supplementation results in a change in the expressivity of the dp mutant phenotypes.Changes in expressivity are produced by 6-azauracil and by elevated temperature although, in those cases, the effect on OPRT activity is minimal.The significance of the observations is discussed in relation to the role of pyrimidine biosynthesis in dp expressivity and chitin synthesis. 相似文献
20.
Tryptophan biosynthesis in Saccharomyces cerevisiae: control of the flux through the pathway. 总被引:19,自引:3,他引:19
下载免费PDF全文

Enzyme derepression and feedback inhibition of the first enzyme are the regulatory mechanisms demonstrated for the tryptophan pathway in Saccharomyces cerevisiae. The relative contributions of the two mechanisms to the control of the flux through the pathway in vivo were analyzed by (i) measuring feedback inhibition of anthranilate synthase in vivo, (ii) determining the effect of regulatory mutations on the level of the tryptophan pool and the flux through the pathway, and (iii) varying the gene dose of individual enzymes of the pathway at the tetraploid level. We conclude that the flux through the pathway is adjusted to the rate of protein synthesis by means of feedback inhibition of the first enzyme by the end product, tryptophan. The synthesis of the tryptophan enzymes could not be repressed below a basal level by tryptophan supplementation of the media. The enzymes are present in excess. Increasing or lowering the concentration of individual enzymes had no noticeable influencing on the overall flux to tryptophan. The uninhibited capacity of the pathway could be observed both upon relieving feedback inhibition by tryptophan limitation and in feedback-insensitive mutants. It exceeded the rate of consumption of the amino acid on minimal medium by a factor of three. Tryptophan limitation caused derepression of four of the five tryptophan enzymes and, as a consequence, led to a further increase in the capacity of the pathway. However, because of the large reserve capacity of the "repressed" pathway, tryptophan limitation could not be imposed on wild-type cells without resorting to the use of analogs. Our results, therefore, suggest that derepression does not serve as an instrument for the specific regulation of the flux through the tryptophan pathway. 相似文献