首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The nonobese diabetic (NOD) mouse spontaneously develops an autoimmune diabetes that shares many immunogenetic features with human insulin-dependent diabetes mellitus (IDDM), type 1 diabetes. The mononuclear cell infiltrates in the islet, which results in the development of insulitis (a prerequisite step for the development of diabetes) are primarily composed of T cells. It is now well accepted that these T cells play important roles in initiating and propagating an autoimmune process, which in turn destroys insulin-producing islet β cells in the pancreas. T cells are subdivided into CD4+ helper T cells and CD8+ cytotoxic T cells. CD4+ T cells are further subdivided into Th1 and Th2 cells based on profiles of cytokine production, and these two T-cell populations counterregulate each other. Because many autoimmune diseases are Th1 T-cell mediated, current studies have focused on manipulating the Th1/Th2 imbalance to suppress the autoimmune process in the NOD model. Furthermore, the incidence of disease is much higher in females than that in males, suggesting an involvement of sex-steroid hormones in the development of diabetes. Understanding insights of the mechanism of immune-mediated islet cell destruction and the interaction between the immune and the neuroendocrine system may, therefore, provide new therapeutic means of preventing this chronic debilitating disease. BioEssays 20 :750–757, 1998. © 1998 John Wiley & Sons, Inc.  相似文献   

2.
3.
Yin Y  Wu C  Song J  Wang J  Zhang E  Liu H  Yang D  Chen X  Lu M  Xu Y 《PloS one》2011,6(7):e22524

Background

Typically, DNA immunization via the intramuscular route induces specific, Th1-dominant immune responses. However, plasmids expressing viral proteins fused to cytotoxic T lymphocyte antigen 4 (CTLA-4) primed Th2-biased responses and were able to induced effective protection against viral challenge in the woodchuck model. Thus, we addressed the question in the mouse model how the Th1/Th2 bias of primed immune responses by a DNA vaccine influences hepatitis B virus (HBV) clearance.

Principal Findings

Plasmids expressing HBV core protein (HBcAg) or HBV e antigen and HBcAg fused to the extracellular domain of CTLA-4 (pCTLA-4-HBc), CD27, and full length CD40L were constructed. Immunizations of these DNA plasmids induced HBcAg-specific antibody and cytotoxic T-cell responses in mice, but with different characteristics regarding the titers and subtypes of specific antibodies and intensity of T-cell responses. The plasmid pHBc expressing HBcAg induced an IgG2a-dominant response while immunizations of pCTLA-4-HBc induced a balanced IgG1/IgG2a response. To assess the protective values of the immune responses of different characteristics, mice were pre-immunized with pCTLA-4-HBc and pHBc, and challenged by hydrodynamic injection (HI) of pAAV/HBV1.2. HBV surface antigen (HBsAg) and DNA in peripheral blood and HBcAg in liver tissue were cleared with significantly accelerated kinetics in both groups. The clearance of HBsAg was completed within 16 days in immunized mice while more than 50% of the control mice are still positive for HBsAg on day 22. Stronger HBcAg-specific T-cell responses were primed by pHBc correlating with a more rapid decline of HBcAg expression in liver tissue, while anti-HBs antibody response developed rapidly in the mice immunized with pCTLA-4-HBc, indicating that the Th1/Th2 bias of vaccine-primed immune responses influences the mode of viral clearance.

Conclusion

Viral clearance could be efficiently achieved by Th1/Th2-balanced immune response, with a small but significant shift in T-cell and B-cell immune responses.  相似文献   

4.
《Genomics》2023,115(4):110646
ObjectiveThis study aims to dissect impacts of exosomes-delivered PD-L1 and CTLA-4 siRNAs on colorectal cancer (CRC) progression and immune responses.MethodsExosomes containing PD-L1 siRNA and CTLA-4 siRNA were prepared and utilized to treat CRC cells to evaluate their effects. A tumor-bearing mouse model was established for verification.ResultsExosomes containing PD-L1 siRNA and CTLA-4 siRNA repressed malignant features of CRC cells and restrained tumor growth and activated tumor immune responses in vivo. Co-culture of CRC cells treated with exosomes containing PD-L1 siRNA and CTLA-4 siRNA with human CD8+ T cells increased the percentage of CD8+ T cells, decreased the apoptotic rate of CD8+ T cells, elevated IL-2, IFN-γ, and TNF-α expression in cell supernatants, reduced adherent density of CRC cells, augmented the positive rate of CRC cells, and subdued tumor immune escape.ConclusionExosomes containing PD-L1 siRNA and CTLA-4 siRNA suppressed CRC progression and enhanced tumor immune responses.  相似文献   

5.
Multiple sclerosis (MS) is a highly disabling neurodegenerative autoimmune condition in which an unbalanced immune response plays a critical role. Although the mechanisms remain poorly defined, helminth infections are known to modulate the severity and progression of chronic inflammatory diseases. The tyrosine kinase receptors TYRO3, AXL, and MERTK (TAM) have been described as inhibitors of the immune response in various inflammatory settings. We show here that patients with concurrent natural helminth infections and MS condition (HIMS) had an increased expression of the negative regulatory TAM receptors in antigen-presenting cells and their agonist GAS6 in circulating CD11bhigh and CD4+ T cells compared to patients with only MS. The Th17 subset was reduced in patients with HIMS with a subsequent downregulation of its pathogenic genetic program. Moreover, these CD4+ T cells promoted lower levels of the co-stimulatory molecules CD80, CD86, and CD40 on dendritic cells compared with CD4+ T cells from patients with MS, an effect that was GAS6-dependent. IL-10+ cells from patients with HIMS showed higher GAS6 expression levels than Th17 cells, and inhibition of phosphatidylserine/GAS6 binding led to an expansion of Th17 effector genes. The addition of GAS6 on activated CD4+ T cells from patients with MS restrains the Th17 gene expression signature. This cohort of patients with HIMS unravels a promising regulatory mechanism to dampen the Th17 inflammatory response in autoimmunity.  相似文献   

6.
Theiler's murine encephalomyelitis virus (TMEV) is a natural mouse pathogen which causes a lifelong persistent infection of the central nervous system (CNS) accompanied by T-cell-mediated myelin destruction leading to chronic, progressive hind limb paralysis. TMEV-induced demyelinating disease (TMEV-IDD) is considered to be a highly relevant animal model for the human autoimmune disease multiple sclerosis (MS), which is thought to be initiated as a secondary consequence of a virus infection. Although TMEV-IDD is initiated by virus-specific CD4(+) T cells targeting CNS-persistent virus, CD4(+) T-cell responses against self myelin protein epitopes activated via epitope spreading contribute to chronic disease pathogenesis. We thus examined the ability of antibodies directed against B7 costimulatory molecules to regulate this chronic virus-induced immunopathologic process. Contrary to previous studies showing that blockade of B7-CD28 costimulatory interactions inhibit the initiation of experimental autoimmune encephalomyelitis, treatment of SJL mice at the time of TMEV infection with murine CTLA-4 immunoglobulin or a combination of anti-B7-1 and anti-B7-2 antibodies significantly enhanced clinical disease severity. Costimulatory blockade inhibited early TMEV-specific T-cell and antibody responses critical in clearing peripheral virus infection. The inhibition of virus-specific immune responses led to significantly increased CNS viral titers resulting in increased damage to myelin-producing oligodendrocytes. Following clearance of the costimulatory antagonists, epitope spreading to myelin epitopes was accelerated as a result of the increased availability of myelin epitopes leading to a more severe chronic disease course. Our results raise concern about the potential use of B7-CD28 costimulatory blockade to treat human autoimmune diseases potentially associated with acute or persistent virus infections.  相似文献   

7.
Autoreactive inflammatory CD4+ T cells, such as T helper (Th)1 and Th17 subtypes, have been found to associate with the pathogenesis of autoimmune disorders. On the other hand, CD4+ Foxp3+ T regulatory (Treg) cells are crucial for the immune tolerance and have a critical role in the suppression of the excessive immune and inflammatory response promoted by these Th cells. In contrast, dendritic cells (DCs) and macrophages are immune cells that through their inflammatory functions promote autoreactive T‐cell responses in autoimmune conditions. In recent years, there has been increasing attention to exploring effective immunomodulatory or anti‐inflammatory agents from the herbal collection of traditional medicine. Berberine, an isoquinoline alkaloid, is one of the main active ingredients extracted from medicinal herbs and has been shown to exert various biological and pharmacological effects that are suggested to be mainly attributed to its anti‐inflammatory and immunomodulatory properties. Several lines of experimental study have recently investigated the therapeutic potential of berberine for treating autoimmune conditions in animal models of human autoimmune diseases. Here, we aimed to seek mechanisms underlying immunomodulatory and anti‐inflammatory effects of berberine on autoreactive inflammatory responses in autoimmune conditions. Reported data reveal that berberine can directly suppress functions and differentiation of pro‐inflammatory Th1 and Th17 cells, and indirectly decrease Th cell‐mediated inflammation through modulating or suppressing other cells assisting autoreactive inflammation, such as Tregs, DCs and macrophages.  相似文献   

8.
Pro-inflammatory CD4+ T cell-mediated autoimmune diseases, such as multiple sclerosis, are hypothesized to be initiated and maintained by self-reactive interferon-gamma (IFN-γ) and interleukin-17 (IL-17) producing CD4+ T cells. Previous studies have shown moderate to significant alterations in inflammatory T cell responses and potentially treatment of autoimmune disease by administration of antihistamine or tricyclic antidepressants alone. The goal of the present study was to determine if treatment of PLP139–151-induced relapsing–remitting experimental autoimmune encephalomyelitis (R-EAE) in SJL/J mice with a combination of two FDA approved drugs for other indications could decrease R-EAE disease. The findings show that combination treatment with desloratadine and nortriptyline decreases the mean clinical score, disease relapse frequency, and number of CD4+ T cells infiltrating into the CNS. In addition, combination treatment of PLP139–151 primed mice decreases the level of IFN-γ and IL-17 secreted via a decrease in both the number of cells secreting and the amount of cytokine secreted per cell following PLP139–151 reactivation ex vivo. This is in contrast to an increase in the level of IL-4 produced and the number of IL-4 secreting cells. The data also show that combination treatment with desloratadine and nortriptyline inhibits the production of IFN-γ and IL-17 produced by naive CD4+ T cells activated in the presence of Th1 cell- and Th17 cell-promoting conditions, while increasing the level of IL-4 produced by naive CD4+ T cells activated in the presence of Th2 cell-promoting conditions. The present findings suggest a novel method for the development of a putative autoimmune therapy.  相似文献   

9.
Oral squamous cell carcinoma (OSCC) is a cancerous lesion with high incidence worldwide. The immunoregulatory events leading to OSCC persistence remain to be elucidated. Our hypothesis is that regulatory T cells (Tregs) are important to obstruct antitumor immune responses in patients with OSCC. In the present study, we investigated the frequency, phenotype, and activity of Tregs from blood and lesions of patients with OSCC. Our data showed that >80% of CD4+CD25+ T cells isolated from PBMC and tumor sites express FoxP3. Also, these cells express surface Treg markers, such as GITR, CD45RO, CD69, LAP, CTLA-4, CCR4, and IL-10. Purified CD4+CD25+ T cells exhibited stronger suppressive activity inhibiting allogeneic T-cell proliferation and IFN-γ production when compared with CD4+CD25+ T cells isolated from healthy individuals. Interestingly, approximately 25% of CD4+CD25? T cells of PBMC from patients also expressed FoxP3 and, although these cells weakly suppress allogeneic T cells proliferative response, they inhibited IFN-γ and induced IL-10 and TGF-β secretion in these co-cultures. Thus, our data show that Treg cells are present in OSCC lesions and PBMC, and these cells appear to suppress immune responses both systemically and in the tumor microenvironment.  相似文献   

10.
Cytotoxic T lymphocyte antigen-4 (CTLA-4) is an immune checkpoint molecule that is mainly expressed on activated T cells and regulatory T (Treg) cells that inhibits T-cell activation and regulates immune homeostasis. Due to the crucial functions of CTLA-4 in T-cell biology, CTLA-4-targeted immunotherapies have been developed for autoimmune disease as well as cancers. CTLA-4 is known to compete with CD28 to interact with B7, but some studies have revealed that its downstream signaling is independent of its ligand interaction. As a signaling domain of CTLA-4, the tyrosine motif plays a role in inhibiting T-cell activation. Recently, the lysine motif has been shown to be required for the function of Treg cells, emphasizing the importance of CTLA-4 signaling. In this review, we summarize the current understanding of CTLA-4 biology and molecular signaling events and discuss strategies to target CTLA-4 signaling for immune modulation and disease therapy.  相似文献   

11.
Multiple sclerosis (MS) is an autoimmune CNS demyelinating disease in which infection may be an important initiating factor. Pathogen-induced cross-activation of autoimmune T cells may occur by molecular mimicry. Infection with wild-type Theiler's murine encephalomyelitis virus induces a late-onset, progressive T cell-mediated demyelinating disease, similar to MS. To determine the potential of virus-induced autoimmunity by molecular mimicry, a nonpathogenic neurotropic Theiler's murine encephalomyelitis virus variant was engineered to encode a mimic peptide from protease IV of Haemophilus influenzae (HI), sharing 6 of 13 aa with the dominant encephalitogenic proteolipid protein (PLP) epitope PLP(139-151). Infection of SJL mice with the HI mimic-expressing virus induced a rapid-onset, nonprogressive paralytic disease characterized by potent activation of self-reactive PLP(139-151)-specific CD4(+) Th1 responses. In contrast, mice immunized with the HI mimic-peptide in CFA did not develop disease, associated with the failure to induce activation of PLP(139-151)-specific CD4(+) Th1 cells. However, preinfection with the mimic-expressing virus before mimic-peptide immunization led to severe disease. Therefore, infection with a mimic-expressing virus directly initiates organ-specific T cell-mediated autoimmunity, suggesting that pathogen-delivered innate immune signals may play a crucial role in triggering differentiation of pathogenic self-reactive responses. These results have important implications for explaining the pathogenesis of MS and other autoimmune diseases.  相似文献   

12.
Initial clinical trials using Trichuris suis eggs (TSO) in autoimmune diseases such as inflammatory bowel disease, revealed a striking suppressive effect on the autoimmune response. Here, we analysed the effect of TSO therapy on the course of multiple sclerosis (MS), as a Th1/Th17-associated autoimmune disease. Different immunological parameters in four patients with secondary progressive MS were surveyed during a 6-month therapy with TSO, focusing on the modulation of T-cell Th1-Th2 balance as well as on the innate immune response. We are able to show a slight downregulation of the Th1-associated cytokine pattern, especially relevant in interleukin (IL)-2 (P < 0.05 after 2 months of therapy), with a temporary increase of Th2-associated cytokines such as IL-4. Furthermore, mild eosinophily and changes in CD4+ and CD8+T cells and natural killer (NK) CD56 bright cell numbers were observed. The findings observed in this group of patients suggest that TSO therapy has a moderate immunomodulatory impact in MS.  相似文献   

13.
T-cell immune responses modulated by T-cell immunoglobulin and mucin domain-containing molecule 3 (Tim-3) during Mycobacterium tuberculosis (Mtb) infection in humans remain poorly understood. Here, we found that active TB patients exhibited increases in numbers of Tim-3-expressing CD4+ and CD8+ T cells, which preferentially displayed polarized effector memory phenotypes. Consistent with effector phenotypes, Tim-3+CD4+ and Tim-3+CD8+ T-cell subsets showed greater effector functions for producing Th1/Th22 cytokines and CTL effector molecules than Tim-3 counterparts, and Tim-3-expressing T cells more apparently limited intracellular Mtb replication in macrophages. The increased effector functions for Tim-3-expressing T cells consisted with cellular activation signaling as Tim-3+CD4+ and Tim-3+CD8+ T-cell subsets expressed much higher levels of phosphorylated signaling molecules p38, stat3, stat5, and Erk1/2 than Tim-3- controls. Mechanistic experiments showed that siRNA silencing of Tim-3 or soluble Tim-3 treatment interfering with membrane Tim-3-ligand interaction reduced de novo production of IFN-γ and TNF-α by Tim-3-expressing T cells. Furthermore, stimulation of Tim-3 signaling pathways by antibody cross-linking of membrane Tim-3 augmented effector function of IFN-γ production by CD4+ and CD8+ T cells, suggesting that Tim-3 signaling helped to drive stronger effector functions in active TB patients. This study therefore uncovered a previously unknown mechanism for T-cell immune responses regulated by Tim-3, and findings may have implications for potential immune intervention in TB.  相似文献   

14.
摘要 目的:探讨细胞毒性T淋巴细胞相关抗原4(CTLA-4)在弥漫大B细胞淋巴瘤(DLBCL)患者外泌体的表达及初步机制。方法:2019年6月至2020年11月就诊于本院的DLBCL患者纳入本项研究,分为缓解组和复发组;选取来医院体检的健康志愿者做为对照组;采用试剂盒分离外泌体,CD63抗体包被磁珠结合后,流式细胞术检测CTLA-4+外泌体的比例;流式细胞术检测CD4+T细胞、CD8+T细胞和调节性T细胞(Treg细胞)的比例。结果:相对于对照组,缓解组DLBCL患者CTLA-4+外泌体的比例升高了37.42%;复发组DLBCL患者CTLA-4+外泌体的比例为6.04%,相对于缓解组,差异具有显著的统计学意义;复发组DLBCL患者CD4/CD8+T细胞比值和Treg细胞比例分别为0.85和0.44%,相对于缓解组,差异均具有显著的统计学意义;相关性分析结果显示CTLA-4+外泌体比例与CD4/CD8+T细胞比值呈负相关,而与Treg细胞比例呈正相关。结论:CTLA-4+外泌体比例在DLBCL患者显著升高,且与淋巴瘤的治疗效果和抗肿瘤免疫反应均具有紧密的相关性。  相似文献   

15.
16.

Background

Anti-cytotoxic T-lymphocyte antigen-4 (CTLA-4) antibodies, such as ipilimumab, have generated measurable immune responses to Melan-A, NY-ESO-1, and gp100 antigens in metastatic melanoma. Vaccination against such targets has potential for immunogenicity and may produce an effector-memory T-cell response.

Methods

To determine the effect of CTLA-4 blockade on antigen-specific responses following vaccination, in-depth immune monitoring was performed on three ipilimumab-treated patients prevaccinated with gp100 DNA (IMF-24), gp100209?C217 and tyrosinase peptides plus GM-CSF DNA (IMF-32), or NY-ESO-1 protein plus imiquimod (IMF-11); peripheral blood mononuclear cells were analyzed by tetramer and/or intracellular cytokine staining following 10-day culture with HLA-A*0201-restricted gp100209?C217 (ITDQVPFSV), tyrosinase369?C377 (YMDGTMSQV), or 20-mer NY-ESO-1 overlapping peptides, respectively. Tumors from IMF-32 were analyzed by immunohistochemistry to help elucidate mechanism(s) underlying tumor escape.

Results

Following vaccination, patients generated weak to no CD4+ or CD8+ T-cell response specific to the vaccine antigen but demonstrated increases in effector-memory (CCR7loCD45RAlo) tetramer+CD8+ T cells. After ipilimumab induction, patients experienced a robust, although sometimes transient, antigen-specific response for gp100 (IMF-32 and IMF-24) or NY-ESO-1 (IMF-11) and produced polyfunctional intracellular cytokines. Primary and metastatic tumors expressed tyrosinase but not gp100 or class I/II MHC molecules.

Conclusion

Vaccination induced a measurable antigen-specific T-cell response that increased following CTLA-4 blockade, potentially ??boosting?? the vaccine-primed response. Tumor escape may be related to antigen loss or lack of MHC expression necessary for immune activity. These results in a limited number of patients support the need for further research into combining vaccination with ipilimumab and provide insight into mechanisms underlying tumor escape.  相似文献   

17.
Hantaviruses infection causing severe emerging diseases with high mortality rates in humans has become public health concern globally. The potential roles of CD4+T cells in viral control have been extensively studied. However, the contribution of CD4+T cells to the host response against Hantaan virus (HTNV) infection remains unclear. Here, based on the T-cell epitopes mapped on HTNV glycoprotein, we studied the effects and characteristics of CD4+T-cell responses in determining the outcome of hemorrhagic fever with renal syndrome. A total of 79 novel 15-mer T-cell epitopes on the HTNV glycoprotein were identified, among which 20 peptides were dominant target epitopes. Importantly, we showed the presence of both effective Th1 responses with polyfunctional cytokine secretion and ThGranzyme B+ cell responses with cytotoxic mediators production against HTNV infection. The HTNV glycoprotein-specific CD4+T-cell responses inversely correlated with the plasma HTNV RNA load in patients. Individuals with milder disease outcomes showed broader epitopes targeted and stronger CD4+T-cell responses against HTNV glycoproteins compared with more severe patients. The CD4+T cells characterized by broader antigenic repertoire, stronger polyfunctional responses, better expansion capacity and highly differentiated effector memory phenotype(CD27-CD28-CCR7-CD45RA-CD127hi) would elicit greater defense against HTNV infection and lead to much milder outcome of the disease. The host defense mediated by CD4+T cells may through the inducing antiviral condition of the host cells and cytotoxic effect of ThGranzyme B+ cells. Thus, these findings highlight the efforts of CD4+T-cell immunity to HTNV control and provide crucial information to better understand the immune defense against HTNV infection.  相似文献   

18.
T-cell co-stimulation delivered by the molecules B7-1 or B7-2 through CD28 has a positive effect on T-cell activation, whereas engagement of cytotoxic T-lymphocyte antigen 4 (CTLA-4) by these molecules inhibits activation. In vivo administration to mice of blocking monoclonal antibodies or Fab fragments against CTLA-4 can augment antigen-specific T-cell responses and, thus, therapy with monoclonal antibody against CTLA-4 has potential applications for tumor therapy and enhancement of vaccine immunization. The effects of B7-1 and B7-2 co-stimulation through CD28 depend on the strength of the signal delivered through the T-cell receptor (TCR) and the activation state of T cells during activation. Thus, we sought to determine whether these factors similarly influence the effect of B7-mediated signals delivered through CTLA-4 during T-cell activation. Using freshly isolated human T cells and Fab fragments of a monoclonal antibody against CTLA-4, we demonstrate here that CTLA-4 blockade can enhance or inhibit the clonal expansion of different T cells that respond to the same antigen, depending on both the T-cell activation state and the strength of the T-cell receptor signal delivered during T-cell stimulation. Thus, for whole T-cell populations, blocking a negative signal may paradoxically inhibit immune responses. These results provide a theoretical framework for clinical trials in which co-stimulatory signals are manipulated in an attempt to modulate the immune response in human disease.  相似文献   

19.
Mammalian sterile 20-like kinase 1 (Mst1) is a MAPK kinase kinase kinase which is involved in a wide range of cellular responses, including apoptosis, lymphocyte adhesion and trafficking. The contribution of Mst1 to Ag-specific immune responses and autoimmunity has not been well defined. In this study, we provide evidence for the essential role of Mst1 in T cell differentiation and autoimmunity, using both genetic and pharmacologic approaches. Absence of Mst1 in mice reduced T cell proliferation and IL-2 production in vitro, blocked cell cycle progression, and elevated activation-induced cell death in Th1 cells. Mst1 deficiency led to a CD4+ T cell development path that was biased toward Th2 and immunoregulatory cytokine production with suppressed Th1 responses. In addition, Mst1−/− B cells showed decreased stimulation to B cell mitogens in vitro and deficient Ag-specific Ig production in vivo. Consistent with altered lymphocyte function, deletion of Mst1 reduced the severity of experimental autoimmune encephalomyelitis (EAE) and protected against collagen-induced arthritis development. Mst1−/− CD4+ T cells displayed an intrinsic defect in their ability to respond to encephalitogenic antigens and deletion of Mst1 in the CD4+ T cell compartment was sufficient to alleviate CNS inflammation during EAE. These findings have prompted the discovery of novel compounds that are potent inhibitors of Mst1 and exhibit desirable pharmacokinetic properties. In conclusion, this report implicates Mst1 as a critical regulator of adaptive immune responses, Th1/Th2-dependent cytokine production, and as a potential therapeutic target for immune disorders.  相似文献   

20.
Tissue invasive helminth infections and tuberculosis (TB) are co-endemic in many parts of the world and can trigger immune responses that might antagonize each other. We have previously shown that helminth infections modulate the Th1 and Th17 responses to mycobacterial-antigens in latent TB. To determine whether helminth infections modulate antigen-specific and non-specific immune responses in active pulmonary TB, we examined CD4+ and CD8+ T cell responses as well as the systemic (plasma) cytokine levels in individuals with pulmonary TB with or without two distinct helminth infections—Wuchereria bancrofti and Strongyloides stercoralis infection. By analyzing the frequencies of Th1 and Th17 CD4+ and CD8+ T cells and their component subsets (including multifunctional cells), we report a significant diminution in the mycobacterial–specific frequencies of mono- and multi–functional CD4+ Th1 and (to a lesser extent) Th17 cells when concomitant filarial or Strongyloides infection occurs. The impairment in CD4+ and CD8+ T cell cytokine responses was antigen-specific as polyclonal activated T cell frequencies were equivalent irrespective of helminth infection status. This diminution in T cell responses was also reflected in diminished circulating levels of Th1 (IFN-γ, TNF-α and IL-2)- and Th17 (IL-17A and IL-17F)-associated cytokines. Finally, we demonstrate that for the filarial co-infections at least, this diminished frequency of multifunctional CD4+ T cell responses was partially dependent on IL-10 as IL-10 blockade significantly increased the frequencies of CD4+ Th1 cells. Thus, co-existent helminth infection is associated with an IL-10 mediated (for filarial infection) profound inhibition of antigen-specific CD4+ T cell responses as well as protective systemic cytokine responses in active pulmonary TB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号