首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
TLRs have been implicated in recognition of pathogen-associated molecular patterns. TLR4 is a signaling receptor for LPS, but requires MD-2 to respond efficiently to LPS. The purposes of this study were to examine the interactions of the extracellular TLR4 domain with MD-2 and LPS. We generated soluble forms of rTLR4 (sTLR4) and TLR2 (sTLR2) lacking the putative intracellular and transmembrane domains. sTLR4 consisted of Glu(24)-Lys(631). MD-2 bound to sTLR4, but not to sTLR2 or soluble CD14. BIAcore analysis demonstrated the direct binding of sTLR4 to MD-2 with a dissociation constant of K(D) = 6.29 x 10(-8) M. LPS-conjugated beads precipitated MD-2, but not sTLR4. However, LPS beads coprecipitated sTLR4 and MD-2 when both proteins were coincubated. The addition of sTLR4 to the medium containing the MD-2 protein significantly attenuated LPS-induced NF-kappaB activation and IL-8 secretion in wild-type TLR4-expressing cells. These results indicate that the extracellular TLR4 domain-MD-2 complex is capable of binding LPS, and that the extracellular TLR4 domain consisting of Glu(24)-Lys(631) enables MD-2 binding and LPS recognition to TLR4. In addition, the use of sTLR4 may lead to a new therapeutic strategy for dampening endotoxin-induced inflammation.  相似文献   

4.
The effects of root applications of kinetin, gibberellic acid (GA3) and indoleacetic acid (IAA) on photosynthesis was measured using an open infrared CO2 gas-exchange system. There was a 30–35% increase in the photosynthetic rates (mg CO2/dm2/hr) of attached leaves within 8 hr following root treatment with 0.47 M kinetin. On a short-term basis (up to 2 days) 0.47 M kinetin was shown to have the optimal stimulatory effect on photosynthesis, relative growth rate (RGR) and total plant dry weight. If the roots were in contact with 0.47 M kinetin for longer than two days there was severe branching of the root system and growth was severely decreased. When plants were left in contact with the kinetin treatment for up to 7 days the optimal stimulatory concentration was considerably lower (0.0047 M) . Plants receiving a 4, 8, or 12 hr pulse with 0.47 M kinetin to the roots exhibited higher leaf photosynthetic rates than the control. Plants receiving an 8 or 12 hr pulse with 0.47 M kinetin maintained photosynthetic rates higher than the control for the duration of the experiment (8 days) while the 4 hr pulse remained higher than the control for only 5 days. A sharp decrease in the photosynthetic rate, RGR and total plant dry weight was observed two days following continual treatments with 0.47 M kinetin to the roots. At low light levels there was approximately a 100% increase in the photosynthetic rate two days following treatment with 0.47 M kinetin while at a saturating irradiance there was a 30 to 35% increase. Indoleacetic acid either showed no effect on the photosynthetic rate, RGR and total plant dry weight or an inhibitory effect was observed. Either GA3 or kinetin alone were shown to stimulate photosynthesis, RGR and total plant dry weight, however, when GA3 at a 1.4 M concentration was applied in combination with kinetin at a 0.0047 M concentration to the roots of tomato plants there was no additive effect. In all cases kinetin dramatically reduced leaf resistance whereas GA3 had no effect.By supplying either GA3 or kinetin to the roots of tomato plants a highly reproducible stimulation in the photosynthetic rate, RGR and total plant dry weight can be achieved at physiologically relevant concentrations, whereas IAA appears to have an inhibitory effect.Approved for publication on July 29, 1981 as paper number 6281 in the journal series of the Pennsylvania Agricultural Experiment Station.Research Assistant and Assistant Professor, respectively.  相似文献   

5.
主要研究了天然生物活性物质Narciclasine(NCS)与植物激素的相互作用。发现NCS对于IAA刺激小麦胚芽鞘伸长过程、GA3对大麦胚乳中α-淀粉两诱导作用及6-BA对离体萝卜子叶光下增大以及转绿过程的促进作用,均显示出一定的抑制作用,而且其抑制强度均随浓度的增加而增加。对于不同的生理过程,NCS表现出不同的抑制强度,其中对离体萝卜子叶光下转绿过程的抑制作用较强。对于离体子叶的光下增大和转绿过程,不同植物激素的表现不同,6-BA和GA3对离体子叶增大及光下转绿具有促进作用;ABA和NCS则显示出一定的抑制作用。  相似文献   

6.
7.
8.
In order for far-red radiation at 760 nm to delay dark closing of Albizzia julibrissin pinnules, red light must be given simultaneously with or just prior to it. Studies have been made to determine whether a phytohormone can replace this red light requirement. Abscisic acid, gibberellin, kinetin, and indole-3-acetic acid have been found to replace the red light. Indole-3-carboxylic acid and a cytokinin antagonist are ineffective. In this hormone and far-red interaction, all hormones are effective at μ M or lower concentrations. The hormones show no interaction with red light at 660 nm. Simultaneous irradiation at 550 nm negates the effect of hormone and far-red interaction in delaying leaflet closing. These results are additional evidence that an unidentified far-red absorbing pigment could be involved with phytochrome in some far-red-mediated processes.  相似文献   

9.
Transient Receptor Potential Vanilloid sub type 4 (TRPV4) is a member of non-selective cation channel which is important for sensation of several physical and chemical stimuli and also involved in multiple physiological functions. Recently it gained immense medical and clinical interest as several independent studies have demonstrated that mutations in the TRPV4 gene can results in genetic disorders like Brachyolmia, Charcot-Marie-Tooth disease type 2C, Spinal Muscular Atrophy and Hereditary Motor and Sensory Neuropathy type 2. Close analysis of the data obtained from these naturally occurring as well as other TRPV4 mutants suggest that it is not the altered channel activity of these mutants per se, but the involvement and interaction of other factors that seem to modulate oligomerization, trafficking and degradation of TRPV4 channels. Also, these factors can either enhance or reduce the activity of TRPV4. In addition, there are some potential signaling events that can also be involved in these genetic disorders. In this review, we analyzed how and what extent certain cellular and molecular functions like oligomerization, surface expression, ubiquitination and functional interactions might be affected by these mutations.  相似文献   

10.
Syndecan-4-mediated signalling   总被引:7,自引:0,他引:7  
The paradigm of cell surface proteoglycan function has been centered on the role of the ectoplasmic heparan sulfate (HS) chains as acceptors of a wide array of ligands, including extracellular matrix (ECM) proteins and soluble growth factors. Within this picture, the core proteins were assigned only a passive role of carrying the glycosaminoglycan (GAG) chains without direct participation in mediating outside-in signals generated by the binding of the above ligands. It appears now, however, that, side by side with the integrins and the tyrosine kinase receptors, the core proteins of the syndecan family of transmembrane proteoglycans are involved in signaling. The highly conserved tails of all the four members of the syndecan family contain a carboxy-terminal PDZ (Postsynaptic density 95, Disk large, Zona occludens-1)-binding motif, capable of forming multimolecular complexes through the binding of PDZ adaptor proteins. The cytoplasmic tail of the ubiquitously expressed syndecan-4 is distinct from the other syndecans in its capacity to bind phosphatidylinositol 4, 5-bisphosphate (PIP2) and to activate protein kinase C (PKC) . These properties may confer on syndecan-4 specific and unique signaling functions.  相似文献   

11.
12.
The CXC chemokine platelet factor 4 (PF4) appears to inhibit tumour growth through its modulation of the activity of angiogenic growth factors. We investigated the heparan sulphate-dependent mechanism of PF4 inhibition of fibroblast growth factor 2 (FGF-2). The ability of PF4 to bind simultaneously to both FGF-2 and HS was assessed using affinity gel chromatography. Thirty-three to forty-two percent more HS bound to the FGF-2 affinity gel in the presence of PF4 than with HS alone. Protection assays showed that PF4 and FGF-2 bound to adjacent or overlapping sites together covering a 12 kDa stretch of HS. This study suggests that the three components may form a ternary complex. PF4 released at sites of angiogenesis may bind to angiogenic growth factors attached to endothelial cell surface HS to disrupt or prevent them from interacting with their signalling receptors. Manipulation of this mechanism may prove useful for clinical intervention of angiogenesis.  相似文献   

13.
The c-Jun NH(2)-terminal kinase (JNK) group of mitogen-activated protein kinases (MAPKs) is activated in response to the treatment of cells with inflammatory cytokines and by exposure to environmental stress. JNK activation is mediated by a protein kinase cascade composed of a MAPK kinase and a MAPK kinase kinase. Here we describe the molecular cloning of a putative molecular scaffold protein, JIP3, that binds the protein kinase components of a JNK signaling module and facilitates JNK activation in cultured cells. JIP3 is expressed in the brain and at lower levels in the heart and other tissues. Immunofluorescence analysis demonstrated that JIP3 was present in the cytoplasm and accumulated in the growth cones of developing neurites. JIP3 is a member of a novel class of putative MAPK scaffold proteins that may regulate signal transduction by the JNK pathway.  相似文献   

14.
15.
Calcium-binding epidermal growth factor (EGF)-like modules are found in numerous extracellular and membrane proteins involved in such diverse processes as blood coagulation, lipoprotein metabolism, determination of cell fate, and cell adhesion. Vitamin K-dependent protein S, a cofactor of the anticoagulant enzyme activated protein C, has four EGF-like modules in tandem with the three C-terminal modules each harbouring a Ca(2+)-binding consensus sequence. Recombinant fragments containing EGF modules 1-4 and 2-4 have two Ca(2+)-binding sites with dissociation constants ranging from 10(-8) to 10(-5) M. Module-module interactions that greatly influence the Ca(2+) affinity of individual modules have been identified. As a step towards an analysis of the structural basis of the high Ca(2+) affinity, we expressed the Ca(2+)-binding EGF pair 3-4 from human protein S. Correct folding was shown by (1)H NMR spectroscopy. Calcium-binding properties of the C-terminal module were determined by titration with chromophoric chelators; binding to the low-affinity N-terminal site was monitored by (1)H-(15)N NMR spectroscopy. At physiological pH and ionic strength, the dissociation constants for Ca(2+) binding were 1.0x10(-6) M and 4. 8x10(-3) M for modules 4 and 3, respectively, i.e. the calcium affinity of the C-terminal site was about 5000-fold higher than that of the N-terminal site. Moreover, the Ca(2+) affinity of EGF 4, in the pair 3-4, was about 9000-fold higher than that of synthetic EGF 4. The EGF modules in protein S are known to mediate the interaction with factor Xa. We have now found modules 3-4 to be involved in this interaction. However, the individual modules 3 and 4 manifested no measurable activity.  相似文献   

16.
G Volterra  A Lecci 《Life sciences》1992,51(6):PL53-PL56
Systemic administration of 4-Aminopyridine at a dose of 4 mg/kg (4-AP) induces hypothermia in mice. Scopolamine (ED50 = 0.26 mg/kg) and two tricyclic antidepressants, desipramine (ED50 = 1.82 mg/kg) and IM/P/3/4 (ED50 = 8.95 mg/kg) completely antagonize 4-AP-induced hypothermia, whereas minaprine (0.1-0.25 mg/kg), a non-tricyclic antidepressant, reverts only 45% of the maximal effect of 4-AP. Oxotremorine at a dose of 0.05 mg/kg (OXO) induces a hypothermic effect comparable to that of 4-AP. Scopolamine (ED50 = 0.011 mg/kg) completely reverts OXO-induced hypothermia whereas desipramine and IM/P/3/4 never produce more than 60% of antagonism over a wide range of doses. Minaprine does not affect OXO-induced hypothermia. These results suggest that the interaction of antidepressants with cholinergic function occurs mainly at the pre-synaptic level.  相似文献   

17.
18.
19.
Human plasma protein S is a nonenzymatic cofactor for activated protein C (APC) in the inactivation of coagulation factors Va and VIIIa, and helps to provide an essential negative feedback on blood coagulation. Previous indirect evidence suggested that the thrombin-sensitive region (TSR:residues 47–75, 1 disulfide) and the first epidermal growth factorlike region (EGF1: residues 76–116, 3 disulfides) of protein S may be functionally important for expression of its APC cofactor activity. To study the functional importance of these modules directly, access to the isolated TSR and EGF1 modules would be preferred. Recombinant expression of protein S intact TSR and correctly folded EGF1 has not been possible. Here we describe the synthesis of both TSR and EGF1 modules by stepwise solid phase peptide synthesis using the in situ neutralization/2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate activation procedure for tert-butoxycarbonyl chemistry. For the TSR, correct intramodular disulfide bonding was confirmed. To overcome folding difficulties with the EGF1, a two-step oxidation procedure was used in which the cysteines involved in the middle, crossing, disulfide bond (Cys85-Cys102) remained protected with acetamidomethyl (Acm) groups after hydrogen fluoride treatment of the peptide resin. Selective formation of the first two disulfide bonds (Cys80-Cys93 and Cys104-Cys113) was followed by release of the Acm groups and subsequent formation of the third disulfide bond (Cys85-Cys102). CD studies revealed 54% of β-sheet/turn in the EGF1 that is characteristic for EGF modules. Deuterium exchange studies suggested a very tightly packed core in EGF1 that is not accessible to the bulk solvent, likely a result from the compact structure caused by its three disulfide bonds. The 30% β-sheet structure observed in the TSR involved amide protons that could be readily exchanged by deuterons, likely reflecting a more flexible structure of the TSR loop in contrast to the rigid structure of EGF1. The establishment of synthetic access to the TSR and EGF1 of protein S provides a versatile tool to study interactions of these modules with the blood coagulation components of the anticoagulant plasma protein C pathway. © 1998 John Wiley & Sons, Inc. Biopoly 46: 53–63, 1998  相似文献   

20.
The dynamics of growth and the contents of free and bound endogenous IAA, gibberellins (GA), cytokinins (zeatin and its riboside), and ABA in kidney bean plants (Phaseolus vulgaris L., cv. Belozernaya) grown in darkness or in the light was studied. Phytohormones were quantified in 5–15-day-old plants by the ELISA technique. Plant growth and phytohormone content were shown to depend on plant age and the conditions of illumination. During scotomorphogenesis, changes in the biomass and hypocotyl length were highly correlated with the content of GA, whereas during photomorphogeneses, these parameters were correlated with the content of zeatin. In darkness, epicotyl growth displayed a positive correlation with the content of GA, whereas in the light, the correlation was negative. Growth characteristics of the primary leaves were shown to correlate with IAA in darkness and with GA and zeatin in the light. At a low concentration of cytokinins in illuminated leaves, cell divisions occurred, whereas, at the higher cytokinin concentrations, cell expansion occurred. The highest content of GA was characteristic of leaves in the period of growth cessation. ABA accumulated during active leaf and root elongation and biomass increment in the light and during hypocotyl growth in darkness. After plant illumination, the ratio of auxins to cytokinins increased in bean roots and decreased in their epicotyls. Thus, light changed the developmental programs of bean plants, which was manifested in the changed rate and duration of growth of various organs (root, hypocotyl, epicotyl, and leaf). Some mechanisms of light action depended on the contents of IAA, ABA, GA, and cytokinins and the ratios between these phytohormones. Differences between scotonorphogenesis of mono-and dicotyledonous plants are discussed in relation to the levels of phytohormones in them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号