共查询到20条相似文献,搜索用时 15 毫秒
1.
Background
The major obstacles for the implementation of genomic selection in Australian beef cattle are the variety of breeds and in general, small numbers of genotyped and phenotyped individuals per breed. The Australian Beef Cooperative Research Center (Beef CRC) investigated these issues by deriving genomic prediction equations (PE) from a training set of animals that covers a range of breeds and crosses including Angus, Murray Grey, Shorthorn, Hereford, Brahman, Belmont Red, Santa Gertrudis and Tropical Composite. This paper presents accuracies of genomically estimated breeding values (GEBV) that were calculated from these PE in the commercial pure-breed beef cattle seed stock sector.Methods
PE derived by the Beef CRC from multi-breed and pure-breed training populations were applied to genotyped Angus, Limousin and Brahman sires and young animals, but with no pure-breed Limousin in the training population. The accuracy of the resulting GEBV was assessed by their genetic correlation to their phenotypic target trait in a bi-variate REML approach that models GEBV as trait observations.Results
Accuracies of most GEBV for Angus and Brahman were between 0.1 and 0.4, with accuracies for abattoir carcass traits generally greater than for live animal body composition traits and reproduction traits. Estimated accuracies greater than 0.5 were only observed for Brahman abattoir carcass traits and for Angus carcass rib fat. Averaged across traits within breeds, accuracies of GEBV were highest when PE from the pooled across-breed training population were used. However, for the Angus and Brahman breeds the difference in accuracy from using pure-breed PE was small. For the Limousin breed no reasonable results could be achieved for any trait.Conclusion
Although accuracies were generally low compared to published accuracies estimated within breeds, they are in line with those derived in other multi-breed populations. Thus PE developed by the Beef CRC can contribute to the implementation of genomic selection in Australian beef cattle breeding. 相似文献2.
Mahdi Saatchi Robert D Schnabel Megan M Rolf Jeremy F Taylor Dorian J Garrick 《遗传、选种与进化》2012,44(1):38
Background
In national evaluations, direct genomic breeding values can be considered as correlated traits to those for which phenotypes are available for traditional estimation of breeding values. For this purpose, estimates of the accuracy of direct genomic breeding values expressed as genetic correlations between traits and their respective direct genomic breeding values are required.Methods
We derived direct genomic breeding values for 2239 registered Limousin and 2703 registered Simmental beef cattle genotyped with either the Illumina BovineSNP50 BeadChip or the Illumina BovineHD BeadChip. For the 264 Simmental animals that were genotyped with the BovineHD BeadChip, genotypes for markers present on the BovineSNP50 BeadChip were extracted. Deregressed estimated breeding values were used as observations in weighted analyses that estimated marker effects to derive direct genomic breeding values for each breed. For each breed, genotyped individuals were clustered into five groups using K-means clustering, with the aim of increasing within-group and decreasing between-group pedigree relationships. Cross-validation was performed five times for each breed, using four groups for training and the fifth group for validation. For each trait, we then applied a weighted bivariate analysis of the direct genomic breeding values of genotyped animals from all five validation sets and their corresponding deregressed estimated breeding values to estimate variance and covariance components.Results
After minimizing relationships between training and validation groups, estimated genetic correlations between each trait and its direct genomic breeding values ranged from 0.39 to 0.76 in Limousin and from 0.29 to 0.65 in Simmental. The efficiency of selection based on direct genomic breeding values relative to selection based on parent average information ranged from 0.68 to 1.28 in genotyped Limousin and from 0.51 to 1.44 in genotyped Simmental animals. The efficiencies were higher for 323 non-genotyped young Simmental animals, born after January 2012, and ranged from 0.60 to 2.04.Conclusions
Direct genomic breeding values show promise for routine use by Limousin and Simmental breeders to improve the accuracy of predicted genetic merit of their animals at a young age and increase response to selection. Benefits from selecting on direct genomic breeding values are greater for breeders who use natural mating sires in their herds than for those who use artificial insemination sires. Producers with unregistered commercial Limousin and Simmental cattle could also benefit from being able to identify genetically superior animals in their herds, an opportunity that has in the past been limited to seed stock animals. 相似文献3.
Ben J Hayes Phillip J Bowman Amanda C Chamberlain Klara Verbyla Mike E Goddard 《遗传、选种与进化》2009,41(1):51
Background
Two key findings from genomic selection experiments are 1) the reference population used must be very large to subsequently predict accurate genomic estimated breeding values (GEBV), and 2) prediction equations derived in one breed do not predict accurate GEBV when applied to other breeds. Both findings are a problem for breeds where the number of individuals in the reference population is limited. A multi-breed reference population is a potential solution, and here we investigate the accuracies of GEBV in Holstein dairy cattle and Jersey dairy cattle when the reference population is single breed or multi-breed. The accuracies were obtained both as a function of elements of the inverse coefficient matrix and from the realised accuracies of GEBV.Methods
Best linear unbiased prediction with a multi-breed genomic relationship matrix (GBLUP) and two Bayesian methods (BAYESA and BAYES_SSVS) which estimate individual SNP effects were used to predict GEBV for 400 and 77 young Holstein and Jersey bulls respectively, from a reference population of 781 and 287 Holstein and Jersey bulls, respectively. Genotypes of 39,048 SNP markers were used. Phenotypes in the reference population were de-regressed breeding values for production traits. For the GBLUP method, expected accuracies calculated from the diagonal of the inverse of coefficient matrix were compared to realised accuracies.Results
When GBLUP was used, expected accuracies from a function of elements of the inverse coefficient matrix agreed reasonably well with realised accuracies calculated from the correlation between GEBV and EBV in single breed populations, but not in multi-breed populations. When the Bayesian methods were used, realised accuracies of GEBV were up to 13% higher when the multi-breed reference population was used than when a pure breed reference was used. However no consistent increase in accuracy across traits was obtained.Conclusion
Predicting genomic breeding values using a genomic relationship matrix is an attractive approach to implement genomic selection as expected accuracies of GEBV can be readily derived. However in multi-breed populations, Bayesian approaches give higher accuracies for some traits. Finally, multi-breed reference populations will be a valuable resource to fine map QTL. 相似文献4.
David Habier Jens Tetens Franz-Reinhold Seefried Peter Lichtner Georg Thaller 《遗传、选种与进化》2010,42(1):5
Background
The impact of additive-genetic relationships captured by single nucleotide polymorphisms (SNPs) on the accuracy of genomic breeding values (GEBVs) has been demonstrated, but recent studies on data obtained from Holstein populations have ignored this fact. However, this impact and the accuracy of GEBVs due to linkage disequilibrium (LD), which is fairly persistent over generations, must be known to implement future breeding programs.Materials and methods
The data set used to investigate these questions consisted of 3,863 German Holstein bulls genotyped for 54,001 SNPs, their pedigree and daughter yield deviations for milk yield, fat yield, protein yield and somatic cell score. A cross-validation methodology was applied, where the maximum additive-genetic relationship (amax) between bulls in training and validation was controlled. GEBVs were estimated by a Bayesian model averaging approach (BayesB) and an animal model using the genomic relationship matrix (G-BLUP). The accuracy of GEBVs due to LD was estimated by a regression approach using accuracy of GEBVs and accuracy of pedigree-based BLUP-EBVs.Results
Accuracy of GEBVs obtained by both BayesB and G-BLUP decreased with decreasing amax for all traits analyzed. The decay of accuracy tended to be larger for G-BLUP and with smaller training size. Differences between BayesB and G-BLUP became evident for the accuracy due to LD, where BayesB clearly outperformed G-BLUP with increasing training size.Conclusions
GEBV accuracy of current selection candidates varies due to different additive-genetic relationships relative to the training data. Accuracy of future candidates can be lower than reported in previous studies because information from close relatives will not be available when selection on GEBVs is applied. A Bayesian model averaging approach exploits LD information considerably better than G-BLUP and thus is the most promising method. Cross-validations should account for family structure in the data to allow for long-lasting genomic based breeding plans in animal and plant breeding. 相似文献5.
Background
Genomic selection can increase genetic gain within aquaculture breeding programs, but the high costs related to high-density genotyping of a large number of individuals would make the breeding program expensive. In this study, a low-cost method using low-density genotyping of pre-selected candidates and their sibs was evaluated by stochastic simulation.Methods
A breeding scheme with selection for two traits, one measured on candidates and one on sibs was simulated. Genomic breeding values were estimated within families and combined with conventional family breeding values for candidates that were pre-selected based on conventional BLUP breeding values. This strategy was compared with a conventional breeding scheme and a full genomic selection program for which genomic breeding values were estimated across the whole population. The effects of marker density, level of pre-selection and number of sibs tested and genotyped for the sib-trait were studied.Results
Within-family genomic breeding values increased genetic gain by 15% and reduced rate of inbreeding by 15%. Genetic gain was robust to a reduction in marker density, with only moderate reductions, even for very low densities. Pre-selection of candidates down to approximately 10% of the candidates before genotyping also had minor effects on genetic gain, but depended somewhat on marker density. The number of test-individuals, i.e. individuals tested for the sib-trait, affected genetic gain, but the fraction of the test-individuals genotyped only affected the relative contribution of each trait to genetic gain.Conclusions
A combination of genomic within-family breeding values, based on low-density genotyping, and conventional BLUP family breeding values was shown to be a possible low marker density implementation of genomic selection for species with large full-sib families for which the costs of genotyping must be kept low without compromising the effect of genomic selection on genetic gain. 相似文献6.
Mengistie Taye Joon Yoon Tadelle Dessie Seoae Cho Sung Jong Oh Hak-Kyo Lee Heebal Kim 《Genes & genomics.》2018,40(1):63-75
Artificial selection towards a desired phenotype/trait has modified the genomes of livestock dramatically that generated breeds that greatly differ in morphology, production and environmental adaptation traits. Angus cattle are among the famous cattle breeds developed for superior beef quality. This paper aimed at exploring genomic regions under selection in Angus cattle that are associated with meat quality traits and other associated phenotypes. The whole genome of 10 Angus cattle was compared with 11 Hanwoo (A-H) and 9 Jersey (A-J) cattle breeds using a cross-population composite likelihood ratio (XP-CLR) statistical method. The top 1% of the empirical distribution was taken as significant and annotated using UMD3.1. As a result, 255 and 210 genes were revealed under selection from A–H and A–J comparisons, respectively. The WebGestalt gene ontology analysis resulted in sixteen (A–H) and five (A–J) significantly enriched KEGG pathways. Several pathways associated with meat quality traits (insulin signaling, type II diabetes mellitus pathway, focal adhesion pathway, and ECM-receptor interaction), and feeding efficiency (olfactory transduction, tight junction, and metabolic pathways) were enriched. Genes affecting beef quality traits (e.g., FABP3, FTO, DGAT2, ACS, ACAA2, CPE, TNNI1), stature and body size (e.g., PLAG1, LYN, CHCHD7, RPS20), fertility and dystocia (e.g., ESR1, RPS20, PPP2R1A, GHRL, PLAG1), feeding efficiency (e.g., PIK3CD, DNAJC28, DNAJC3, GHRL, PLAG1), coat color (e.g., MC1-R) and genetic disorders (e.g., ITGB6, PLAG1) were found to be under positive selection in Angus cattle. The study identified genes and pathways that are related to meat quality traits and other phenotypes of Angus cattle. The findings in this study, after validation using additional or independent dataset, will provide useful information for the study of Angus cattle in particular and beef cattle in general. 相似文献
7.
Megan M Rolf Dorian J Garrick Tara Fountain Holly R Ramey Robert L Weaber Jared E Decker E John Pollak Robert D Schnabel Jeremy F Taylor 《遗传、选种与进化》2015,47(1)
Background
While several studies have examined the accuracy of direct genomic breeding values (DGV) within and across purebred cattle populations, the accuracy of DGV in crossbred or multi-breed cattle populations has been less well examined. Interest in the use of genomic tools for both selection and management has increased within the hybrid seedstock and commercial cattle sectors and research is needed to determine their efficacy. We predicted DGV for six traits using training populations of various sizes and alternative Bayesian models for a population of 3240 crossbred animals. Our objective was to compare alternate models with different assumptions regarding the distributions of single nucleotide polymorphism (SNP) effects to determine the optimal model for enhancing feasibility of multi-breed DGV prediction for the commercial beef industry.Results
Realized accuracies ranged from 0.40 to 0.78. Randomly assigning 60 to 70% of animals to training (n ≈ 2000 records) yielded DGV accuracies with the smallest coefficients of variation. Mixture models (BayesB95, BayesCπ) and models that allow SNP effects to be sampled from distributions with unequal variances (BayesA, BayesB95) were advantageous for traits that appear or are known to be influenced by large-effect genes. For other traits, models differed little in prediction accuracy (~0.3 to 0.6%), suggesting that they are mainly controlled by small-effect loci.Conclusions
The proportion (60 to 70%) of data allocated to training that optimized DGV accuracy and minimized the coefficient of variation of accuracy was similar to large dairy populations. Larger effects were estimated for some SNPs using BayesA and BayesB95 models because they allow unequal SNP variances. This substantially increased DGV accuracy for Warner-Bratzler Shear Force, for which large-effect quantitative trait loci (QTL) are known, while no loss in accuracy was observed for traits that appear to follow the infinitesimal model. Large decreases in accuracy (up to 0.07) occurred when SNPs that presumably tag large-effect QTL were over-regressed towards the mean in BayesC0 analyses. The DGV accuracies achieved here indicate that genomic selection has predictive utility in the commercial beef industry and that using models that reflect the genomic architecture of the trait can have predictive advantages in multi-breed populations.Electronic supplementary material
The online version of this article (doi:10.1186/s12711-015-0106-8) contains supplementary material, which is available to authorized users. 相似文献8.
Background
Artificial selection for economically important traits in cattle is expected to have left distinctive selection signatures on the genome. Access to high-density genotypes facilitates the accurate identification of genomic regions that have undergone positive selection. These findings help to better elucidate the mechanisms of selection and to identify candidate genes of interest to breeding programs.Results
Information on 705 243 autosomal single nucleotide polymorphisms (SNPs) in 3122 dairy and beef male animals from seven cattle breeds (Angus, Belgian Blue, Charolais, Hereford, Holstein-Friesian, Limousin and Simmental) were used to detect selection signatures by applying two complementary methods, integrated haplotype score (iHS) and global fixation index (FST). To control for false positive results, we used false discovery rate (FDR) adjustment to calculate adjusted iHS within each breed and the genome-wide significance level was about 0.003. Using the iHS method, 83, 92, 91, 101, 85, 101 and 86 significant genomic regions were detected for Angus, Belgian Blue, Charolais, Hereford, Holstein-Friesian, Limousin and Simmental cattle, respectively. None of these regions was common to all seven breeds. Using the FST approach, 704 individual SNPs were detected across breeds. Annotation of the regions of the genome that showed selection signatures revealed several interesting candidate genes i.e. DGAT1, ABCG2, MSTN, CAPN3, FABP3, CHCHD7, PLAG1, JAZF1, PRKG2, ACTC1, TBC1D1, GHR, BMP2, TSG1, LYN, KIT and MC1R that play a role in milk production, reproduction, body size, muscle formation or coat color. Fifty-seven common candidate genes were found by both the iHS and global FST methods across the seven breeds. Moreover, many novel genomic regions and genes were detected within the regions that showed selection signatures; for some candidate genes, signatures of positive selection exist in the human genome. Multilevel bioinformatic analyses of the detected candidate genes suggested that the PPAR pathway may have been subjected to positive selection.Conclusions
This study provides a high-resolution bovine genomic map of positive selection signatures that are either specific to one breed or common to a subset of the seven breeds analyzed. Our results will contribute to the detection of functional candidate genes that have undergone positive selection in future studies.Electronic supplementary material
The online version of this article (doi:10.1186/s12711-015-0127-3) contains supplementary material, which is available to authorized users. 相似文献9.
Mario PL Calus 《遗传、选种与进化》2014,46(1):24
Background
Since both the number of SNPs (single nucleotide polymorphisms) used in genomic prediction and the number of individuals used in training datasets are rapidly increasing, there is an increasing need to improve the efficiency of genomic prediction models in terms of computing time and memory (RAM) required.Methods
In this paper, two alternative algorithms for genomic prediction are presented that replace the originally suggested residual updating algorithm, without affecting the estimates. The first alternative algorithm continues to use residual updating, but takes advantage of the characteristic that the predictor variables in the model (i.e. the SNP genotypes) take only three different values, and is therefore termed “improved residual updating”. The second alternative algorithm, here termed “right-hand-side updating” (RHS-updating), extends the idea of improved residual updating across multiple SNPs. The alternative algorithms can be implemented for a range of different genomic predictions models, including random regression BLUP (best linear unbiased prediction) and most Bayesian genomic prediction models. To test the required computing time and RAM, both alternative algorithms were implemented in a Bayesian stochastic search variable selection model.Results
Compared to the original algorithm, the improved residual updating algorithm reduced CPU time by 35.3 to 43.3%, without changing memory requirements. The RHS-updating algorithm reduced CPU time by 74.5 to 93.0% and memory requirements by 13.1 to 66.4% compared to the original algorithm.Conclusions
The presented RHS-updating algorithm provides an interesting alternative to reduce both computing time and memory requirements for a range of genomic prediction models. 相似文献10.
Background
Female reproductive technologies such as multiple ovulation and embryo transfer (MOET) and juvenile in vitro embryo production and embryo transfer (JIVET) can boost rates of genetic gain but they can also increase rates of inbreeding. Inbreeding can be managed using the principles of optimal contribution selection (OCS), which maximizes genetic gain while placing a penalty on the rate of inbreeding. We evaluated the potential benefits and synergies that exist between genomic selection (GS) and reproductive technologies under OCS for sheep and cattle breeding programs.Methods
Various breeding program scenarios were simulated stochastically including: (1) a sheep breeding program for the selection of a single trait that could be measured either early or late in life; (2) a beef breeding program with an early or late trait; and (3) a dairy breeding program with a sex limited trait. OCS was applied using a range of penalties (severe to no penalty) on co-ancestry of selection candidates, with the possibility of using multiple ovulation and embryo transfer (MOET) and/or juvenile in vitro embryo production and embryo transfer (JIVET) for females. Each breeding program was simulated with and without genomic selection.Results
All breeding programs could be penalized to result in an inbreeding rate of 1 % increase per generation. The addition of MOET to artificial insemination or natural breeding (AI/N), without the use of GS yielded an extra 25 to 60 % genetic gain. The further addition of JIVET did not yield an extra genetic gain. When GS was used, MOET and MOET + JIVET programs increased rates of genetic gain by 38 to 76 % and 51 to 81 % compared to AI/N, respectively.Conclusions
Large increases in genetic gain were found across species when female reproductive technologies combined with genomic selection were applied and inbreeding was managed, especially for breeding programs that focus on the selection of traits measured late in life or that are sex-limited. Optimal contribution selection was an effective tool to optimally allocate different combinations of reproductive technologies. Applying a range of penalties to co-ancestry of selection candidates allows a comprehensive exploration of the inbreeding vs. genetic gain space. 相似文献11.
Haroldo Henrique de Rezende Neves Roberto Carvalheiro Sandra Aidar de Queiroz 《Genetica》2018,146(1):85-99
Simulation studies allow addressing consequences of selection schemes, helping to identify effective strategies to enable genetic gain and maintain genetic diversity. The aim of this study was to evaluate the long-term impact of genomic selection (GS) in genetic progress and genetic diversity of beef cattle. Forward-in-time simulation generated a population with pattern of linkage disequilibrium close to that previously reported for real beef cattle populations. Different scenarios of GS and traditional pedigree-based BLUP (PBLUP) selection were simulated for 15 generations, mimicking selection for female reproduction and meat quality. For GS scenarios, an alternative selection criterion was simulated (wGBLUP), intended to enhance long-term gains by attributing more weight to favorable alleles with low frequency. GS allowed genetic progress up to 40% greater than PBLUP, for female reproduction and meat quality. The alternative criterion wGBLUP did not increase long-term response, although allowed reducing inbreeding rates and loss of favorable alleles. The results suggest that GS outperforms PBLUP when the selected trait is under less polygenic background and that attributing more weight to low-frequency favorable alleles can reduce inbreeding rates and loss of favorable alleles in GS. 相似文献
12.
An association study using AFLP markers and application to a beef cattle breeding population 总被引:1,自引:0,他引:1
Using amplified fragment length polymorphism (AFLP) fingerprinting, selective genotyping was performed to determine if this method was effective for selecting superior breeding stock. Forty-eight cows with extreme genetic merit for beef marbling score (BMS) were selected from a population of Japanese Black cattle (n = 4462), including 25 with the highest for predicted breeding value (PBV) and 23 with the lowest. Sixteen AFLP fragments were selected for further analysis based on fragment frequency differences between the high and low groups. A linear discriminant analysis using these AFLP fragments was applied in order to derive a discriminant function that classified the cows into high and low groups. Seven of the 16 fragments were included in the resulting function and the discriminant scores (general genetic values, GGV) of the 48 cows were calculated using the function. These cows were clearly separated into high and low groups by GGV with a correlation ratio of 0.91 (discriminative error of 2.1%). The same function was then applied to 121 additional cows that were randomly selected from the original population. A significant regression coefficient of GGV on BMS-PBV (R2 = 0.45) was obtained, which indicates that the GGV can be used as a selection criterion for BMS in this population. These results suggest that AFLP fingerprinting can be used for animal breeding without identifying the underlying genes affecting the trait of interest. 相似文献
13.
Background
Genomic prediction of breeding values involves a so-called training analysis that predicts the influence of small genomic regions by regression of observed information on marker genotypes for a given population of individuals. Available observations may take the form of individual phenotypes, repeated observations, records on close family members such as progeny, estimated breeding values (EBV) or their deregressed counterparts from genetic evaluations. The literature indicates that researchers are inconsistent in their approach to using EBV or deregressed data, and as to using the appropriate methods for weighting some data sources to account for heterogeneous variance.Methods
A logical approach to using information for genomic prediction is introduced, which demonstrates the appropriate weights for analyzing observations with heterogeneous variance and explains the need for and the manner in which EBV should have parent average effects removed, be deregressed and weighted.Results
An appropriate deregression for genomic regression analyses is EBV/r2 where EBV excludes parent information and r2 is the reliability of that EBV. The appropriate weights for deregressed breeding values are neither the reliability nor the prediction error variance, two alternatives that have been used in published studies, but the ratio (1 - h2)/[(c + (1 - r2)/r2)h2] where c > 0 is the fraction of genetic variance not explained by markers.Conclusions
Phenotypic information on some individuals and deregressed data on others can be combined in genomic analyses using appropriate weighting. 相似文献14.
Insulin-like growth factor-I (IGF-I) is an anabolic polypeptide involved in reproductive performance in several species. The objectives of this study were to determine relationships of pregnancy rate, and age of heifers at puberty and at first calving with serum IGF-I concentration in Angus beef cattle. Data were obtained from an ongoing divergent selection experiment for IGF-I concentration involving purebred Angus cows. The IGF-I concentrations measured at Days 28, 42, and 56 of the 140-day postweaning test are abbreviated as IGF28, IGF42, and IGF56, respectively. Pregnancy rate did not differ between high and low IGF-I line females (P=0.95; n=2618), but high line heifers tended to be 4.02+/-2.18 days younger (P=0.07; n=281) at first calving. Residual correlations of age of heifers at first calving (AFC) with IGF-I measurements were not significant. The linear and quadratic terms for regression of AFC on IGF-I concentrations were also non-significant. Contrast analysis showed no difference in age at puberty between the high and low IGF-I line heifers (5.3+/-6.4 days earlier in the high line; P=0.43; n=51). Residual correlations of age of heifers at puberty with IGF28, IGF42, IGF56, and mean IGF-I were -0.30 (P=0.03), -0. 22 (P=0.12), -0.35 (P=0.01), and -0.34 (P=0.01), respectively. The observed relationships between female reproductive traits and IGF-I concentration in Angus beef cattle suggest complex and multiple roles for IGF-I in reproduction. 相似文献
15.
Background
The prediction of the outcomes from multistage breeding schemes is especially important for the introduction of genomic selection in dairy cattle. Decorrelated selection indices can be used for the optimisation of such breeding schemes. However, they decrease the accuracy of estimated breeding values and, therefore, the genetic gain to an unforeseeable extent and have not been applied to breeding schemes with different generation intervals and selection intensities in each selection path.Methods
A grid search was applied in order to identify optimum breeding plans to maximise the genetic gain per year in a multistage, multipath dairy cattle breeding program. In this program, different values of the accuracy of estimated genomic breeding values and of their costs per individual were applied, whereby the total breeding costs were restricted. Both decorrelated indices and optimum selection indices were used together with fast multidimensional integration algorithms to produce results.Results
In comparison to optimum indices, the genetic gain with decorrelated indices was up to 40% less and the proportion of individuals undergoing genomic selection was different. Additionally, the interaction between selection paths was counter-intuitive and difficult to interpret. Independent of using decorrelated or optimum selection indices, genomic selection replaced traditional progeny testing when maximising the genetic gain per year, as long as the accuracy of estimated genomic breeding values was ≥ 0.45. Overall breeding costs were mainly generated in the path "dam-sire". Selecting males was still the main source of genetic gain per year.Conclusion
Decorrelated selection indices should not be used because of misleading results and the availability of accurate and fast algorithms for exact multidimensional integration. Genomic selection is the method of choice when maximising the genetic gain per year but genotyping females may not allow for a reduction in overall breeding costs. Furthermore, the economic justification of genotyping females remains questionable. 相似文献16.
Rolf MM Taylor JF Schnabel RD McKay SD McClure MC Northcutt SL Kerley MS Weaber RL 《Animal genetics》2012,43(4):367-374
Estimated breeding values for average daily feed intake (AFI; kg/day), residual feed intake (RFI; kg/day) and average daily gain (ADG; kg/day) were generated using a mixed linear model incorporating genomic relationships for 698 Angus steers genotyped with the Illumina BovineSNP50 assay. Association analyses of estimated breeding values (EBVs) were performed for 41,028 single nucleotide polymorphisms (SNPs), and permutation analysis was used to empirically establish the genome-wide significance threshold (P < 0.05) for each trait. SNPs significantly associated with each trait were used in a forward selection algorithm to identify genomic regions putatively harbouring genes with effects on each trait. A total of 53, 66 and 68 SNPs explained 54.12% (24.10%), 62.69% (29.85%) and 55.13% (26.54%) of the additive genetic variation (when accounting for the genomic relationships) in steer breeding values for AFI, RFI and ADG, respectively, within this population. Evaluation by pathway analysis revealed that many of these SNPs are in genomic regions that harbour genes with metabolic functions. The presence of genetic correlations between traits resulted in 13.2% of SNPs selected for AFI and 4.5% of SNPs selected for RFI also being selected for ADG in the analysis of breeding values. While our study identifies panels of SNPs significant for efficiency traits in our population, validation of all SNPs in independent populations will be necessary before commercialization. 相似文献
17.
Karin Meyer 《遗传、选种与进化》2005,37(6):473-500
Regression on the basis function of B-splines has been advocated as an alternative to orthogonal polynomials in random regression analyses. Basic theory of splines in mixed model analyses is reviewed, and estimates from analyses of weights of Australian Angus cattle from birth to 820 days of age are presented. Data comprised 84 533 records on 20 731 animals in 43 herds, with a high proportion of animals with 4 or more weights recorded. Changes in weights with age were modelled through B-splines of age at recording. A total of thirteen analyses, considering different combinations of linear, quadratic and cubic B-splines and up to six knots, were carried out. Results showed good agreement for all ages with many records, but fluctuated where data were sparse. On the whole, analyses using B-splines appeared more robust against "end-of-range" problems and yielded more consistent and accurate estimates of the first eigenfunctions than previous, polynomial analyses. A model fitting quadratic B-splines, with knots at 0, 200, 400, 600 and 821 days and a total of 91 covariance components, appeared to be a good compromise between detailedness of the model, number of parameters to be estimated, plausibility of results, and fit, measured as residual mean square error. 相似文献
18.
Climate change and the increasing demand for sustainable energy resources require urgent strategies to increase the accuracy of selection in tree breeding (associated with higher gain). We investigated the combined pedigree and genomic-based relationship approach and its impact on the accuracy of predicted breeding values using data from 5-year-old Eucalyptus grandis progeny trial. The number of trees that can be genotyped in a tree breeding population is limited; therefore, the combined approach can be a feasible and efficient strategy to increase the genetic gain and provide more accurate predicted breeding values. We calculated the accuracy of predicted breeding values for two growth traits, diameter at breast height and total height, using two evaluation approaches: the combined approach and the classical pedigree-based approach. We also investigated the influence of two different trait heritabilities as well as the inclusion of competition genetic effects or environmental heterogeneity in an individual-tree mixed model on the estimated variance components and accuracy of breeding values. The genomic information of genotyped trees is automatically propagated to all trees with the combined approach, including the non-genotyped mothers. This increased the accuracy of overall breeding values, except for the non-genotyped trees from the competition model. The increase in the accuracy was higher for the total height, the trait with low heritability. The combined approach is a simple, fast, and accurate genomic selection method for genetic evaluation of growth traits in E. grandis and tree species in general. It is simple to implement in a traditional individual-tree mixed model and provides an easy extension to individual-tree mixed models with competition effects and/or environmental heterogeneity. 相似文献
19.
20.
High-fertility (control cows) and low-fertility (cows and heifers not pregnant after two consecutive breeding seasons — twice-open) cyclic bovine females were treated with a single injection of 1000 IU of human chrionic gonadotropin (HCG) or 100 μg of gonadotropin releasing hormone (GnRH) to enhance and/or hasten corpus luteum formation and progesterone secretion, and improve conception rate in the low-fertility females. Hormone treatments were administered to 38 parous control cows, 34 twice-open parous cows, and 27 twice-open nonparous heifers immediately after natural mating by a fertile bull. Blood samples were collected on Days 3, 6, 9, 12, and 18 after mating for determination of systemic progesterone concentrations. Pregnancy rate at necrospy approximately 33 days after mating (range 31–37) was higher in control cows (73.0%) than in twice-open cows (48.4%; P<0.05) or twice-open heifers (34.6%; P<0.01). Pregnancy rate was not affected by the HCG or GnRH treatment. The HCG treatment increased plasma progesterone concentrations in twice-open heifers but not in control or twice-open cows. Progesterone was unaffected by the GnRH treatment. Systemic progesterone concentrations were higher in control than in twice-open females but did not differ between pregnant and nonpregnant females of Days 3, 6, 9 and 12 after mating. Enhanced gonadotropin stimulation at estrus by injection of either HCG or GnRH did not increase pregnancy rate or systemic progesterone concentrations (except in HCG-treated twice-open heifers) in low- or high-fertility females. Lower pregnancy rates in twice-open females were not associated directly with the lower systemic progesterone concentrations. 相似文献