共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Jasplakinolide reversibly disrupts actin filaments in suspension-cultured tobacco BY-2 cells 总被引:3,自引:0,他引:3
Summary. Jasplakinolide is potentially a useful pharmacological tool for the study of actin organization and dynamics in living cells,
since it induces actin polymerization in vitro and, unlike phalloidin, is membrane permeative. In the present work, the effect
of jasplakinolide on the actin cytoskeleton of living suspension-cultured Nicotiana tabacum ‘Bright Yellow 2’ cells was investigated. Actin filaments in the living cells were disrupted by jasplakinolide. The effect
of jasplakionlide on the actin cytoskeleton was concentration and time dependent. When cells were treated with a moderate
concentration (150 nM) of jasplakinolide, cortical actin filaments were disrupted preferentially, whereas actin aggregated
at the perinuclear region. With concentrations higher than 400 nM and exposure times longer than 30 min, actin filaments in
the cell disappeared completely. The effect of jasplakinolide on the actin cytoskeleton was reversible even at high concentration.
Actin bundles appeared first in the perinuclear region within 5 min, and the cortical actin array was reestablished in 15 min,
suggesting that actin filaments might be organized at this region.
Received July 31, 2001 Accepted December 14, 2001 相似文献
3.
Stomatal opening by fusicoccin is accompanied by depolymerization of actin filaments in guard cells 总被引:6,自引:0,他引:6
Actin in guard cells is assembled in a radial pattern when stomata are induced to open under light, but the filaments are
disassembled when stomata are closed under darkness or by abscisic acid (S.-O. Eun and Y. Lee, 1997, Plant Physiol. 115: 1491–1498).
To test if signals that open stomata commonly generate the polymerized form of actin in guard cells, leaves of Commelina communis L. were treated with a potent stomatal opening agent, fusicoccin, and the actin organization examined by immunolocalization
techniques. When stomata were induced to open by fusicoccin, hardly any of the filamentous form of actin was detected; instead,
the actin resembled that present in guard cells that had been treated with an antagonist to actin filaments, cytochalasin
D, and showed a sharp contrast to the long filaments developed in illuminated guard cells. Furthermore, treatment of illuminated
leaves with fusicoccin disintegrated actin filaments that had already been formed in the guard cells. Preincubation of leaves
with phalloidin, which interferes with fusicoccin-induced actin depolymerization, delayed fusicoccin-induced opening during
the early phase. These observations suggest that the prevention of actin filament formation and/or depolymerization of actin
filaments may accelerate the stomatal opening process in response to fusicoccin.
Received: 1 October 1999 / Accepted: 29 November 1999 相似文献
4.
Summary Using fluorescent probes and confocal laser scanning microscopy we have examined the organisation of the microtubule and actin components of the cytoskeleton in kidney-shaped guard cells of six species of Selaginella. The stomata of Selaginella exhibit novel cytoskeletal arrangements, and at different developmental stages, display similarities in microtubule organisation to the two major types of stomata: grass (dumbbell-shaped) and non-grass (kidney-shaped). Initially, cortical microtubules and F-actin radiate from the stomatal pore and extend across the external and internal periclinal cell surfaces of the guard cells. As the stomata differentiate, the cytoskeleton reorients only along the internal periclinal walls. Reorganisation is synchronous in guard cells of the same stoma. Microtubules on the inner periclinal walls of the guard cells now emanate from areas of the ventral wall on either side of the pore and form concentric circles around the pore. The rearrangement of F-actin is similar to that of microtubules although F-actin is less well organised. Radial arrays of both microtubules and F-actin are maintained adjacent to the external surfaces. Subsequently, in two of the six species of Selaginella examined, microtubules on both the internal and external walls become oriented longitudinally and exhibit no association with the ventral wall. In the other four species, microtubules adjacent to the internal walls revert to the initial radial alignment. These findings may have implications in the development and evolution of the stomatal complex.Abbreviations GC
guard cell
- MT
microtubule 相似文献
5.
Actin filaments are among the major components of the cytoskeleton, and participate in various cellular dynamic processes. However, conflicting results had been obtained on the localization of actin filaments on the mitotic apparatus and their participation in the process of chromosome segregation. We demonstrated by using rhodamine-phalloidin staining, the localization of actin filaments on the mitotic spindles of tobacco BY-2 cells when the cells were treated with cytochalasin D. At prophase, several clear spots were observed at or near the kinetochores of the chromosomes. At anaphase, the actin filaments that appeared to be pulling chromosomes toward the division poles were demonstrated. However, as there was a slight possibility that these results might have been the artifacts of cytochalasin D treatment or the phalloidin staining, we analyzed the localization of actin filaments at the mitotic apparatus immunologically. We cloned a novel BY-2 -type actin cDNA and prepared a BY-2 actin antibody. The fluorescence of the anti-BY-2 actin antibody was clearly observed at the mitotic apparatus in both non-treated and cytochalasin D-treated BY-2 cells during mitosis. The facts that similar results were obtained in both actin staining with rhodamine-phalloidin and immunostaining with actin antibody strongly indicate the participation of actin in the organization of the spindle body or in the process of chromosome segregation. Furthermore, both filamentous actin and spindle bodies disappeared in the cells treated with propyzamide, which depolymerizes microtubules, supporting the notion that actin filaments are associated with microtubules organizing the spindle body.Hiroshi Yasuda and Katsuhiro Kanda contributed equally. 相似文献
6.
Actin filaments in guard cells and their dynamics function in regulating stomatal movement. In this study, the array and distribution of actin filaments in guard cells during stomatal movement were studied with two vital labeling, microinjection of alexa-phalloidin in Vicia faba and expression of GFP-mTn in tobacco. We found that the random array of actin filaments in the most of the closed stomata changed to a ring-like array after stomatal open. And actin filaments, which were throughout the cytoplasm of guard cells of closed stomata (even distribution), were mainly found in the cortical cytoplasm in the case of open stomata (cortical distribution). These results revealed that the random array and even distribution of actin filaments in guard cells may be required for keeping the closed stomata; similarly, the ring-like array and cortical distribution of actin filaments function in sustaining open stomata. Furthermore, we found that actin depolymerization, the trait of moving stomata, facilitates the transformation of actin array and distribution with stomatal movement. So, the depolymerization of actin filaments was favorable for the changes of actin array and distribution in guard cells and thus facilitated stomatal movement. 相似文献
7.
C. K. Pallaghy 《Planta》1968,80(2):147-153
Summary The measurement of the electrical potential of guard cells of tobacco relative to that of an external bathing solution is described. The method employs a salt bridge provided by a glass capillary inserted into an individual cell. It is shown that the intracellular potential, for example-76 mv in 11 mN KCl, is similar to that found for other cells in higher plants and appears to be independent of light intensity and the presence of bicarbonate ions. Spontaneous oscillations in the potential, with a period of 6 min, resemble those which have been observed in plant roots. Evidence that the permeability of the guard cell membrane to sodium is the same as that for potassium is discussed. 相似文献
8.
Stomatal regulation is essential for the growth of land plants. Pairs of guard cells that delineate the stomata perceive stimuli and respond to acquire the optimum aperture. The actin cytoskeleton participates in signaling pathways of the guard cell (Kim et al., 1995; Eun and Lee, 1997; Hwang et al., 1997). To identify the upstream molecules that regulate actin dynamics in plant cells, we immunoblotted proteins extracted from leaves ofCommelina commuais L. with the RhoA antibody, and identified one band of 26KD from the epidermis. Using immunofluorescence microscopy, we examined the subcellular distribution of the immuno-reactant(s) in guard cells. When stomata were open under light, the organization of the immuno-reactant(s) resembled the radial arrangement of cortical actin filaments of guard cells. Double-labeling of the guard cells, using the RhoA and actin antibodies as primary antibodies, showed that the immuno-reactant(s) of the RhoA antibody and actin filaments co-localized in the cortex of illuminated guard cells. However, the pattern was not found in guard cells when stomata were closed under darkness or by ABA, conditions under which cortical actin proteins are disassembled in guard cells. From these observations, we can suggest the possible presence of a RhoA-like protein and its involvement in the organization of the actin cytoskeleton in guard cells. 相似文献
9.
During the opening and closing of stomata, guard cells undergo rapid and reversible changes in their volume and shape, which affects the adhesion of the plasma membrane (PM) to the cell wall (CW). The dynamics of actin filaments in guard cells are involved in stomatal movement by regulating structural changes and intracellular signaling. However, it is unclear whether actin dynamics regulate the adhesion of the PM to the CW. In this study, we investigated the relationship between actin dynamics and PM–CW adhesion by the hyperosmotic-induced plasmolysis of tobacco guard cells. We found that actin filaments in guard cells were depolymerized during mannitol-induced plasmolysis. The inhibition of actin dynamics by treatment with latrunculin B or jasplakinolide and the disruption of the adhesion between the PM and the CW by treatment with RGDS peptide (Arg-Gly-Asp-Ser) enhanced guard cell plasmolysis. However, treatment with latrunculin B alleviated the RGDS peptide-induced plasmolysis and endocytosis. Our results reveal that the actin depolymerization is involved in the regulation of the PW–CW adhesion during hyperosmotic-induced plasmolysis in tobacco guard cells. 相似文献
10.
Cortical actin filaments in guard cells respond differently to abscisic acid in wild-type and abi1-1 mutant Arabidopsis 总被引:1,自引:0,他引:1
Cortical actin filaments in guard cells of Commelina communis L. show signal-specific organization during stomatal movements [S.-O. Eun and Y. Lee (1997) Plant Physiol 115: 1491–1498;
S.-O. Eun and Y. Lee (2000) Planta 210: 1014–1017]. To study the roles of actin in signal transduction, it is advantageous
to use Arabidopsis thaliana (L.) Heynh., an excellent model plant with numerous well-characterized mutants. Using an immunolocalization technique, we
found that actin deployments in guard cells of A. thaliana were basically identical to those in C. communis: actin proteins were assembled into radial filaments under illumination, and were disassembled by ABA. In addition, we examined
actin organization in an ABA-insensitive mutant (abi1-1) to test the involvement of protein phosphatase 2C (PP2C) in the control of actin structure. A clear difference was observed
after ABA treatment, namely, neither stomatal closing nor depolymerization of actin filaments was observed in guard cells
of the mutant. Our results indicate that PP2C participates in ABA-induced actin changes in guard cells.
Received: 23 June 2000 / Accepted: 20 October 2000 相似文献
11.
12.
Summary Ring formed actin filaments were observed in tobacco BY-2 cells. The change of this structure during culture was followed by fluorescence microscopy. 相似文献
13.
Evidence that actin filaments are involved in controlling the permeability of plasmodesmata in tobacco mesophyll 总被引:8,自引:4,他引:8
Biao Ding Myoung-Ok Kwon Leif Warnberg 《The Plant journal : for cell and molecular biology》1996,10(1):157-164
The role of actin filaments in regulating plasmodesmal transport has been studied by microinjection experiments in mesophyll cells of tobacco (Nicotiana tabacum L. cv. Samsun). When fluorescent dextrans of various molecular sizes were each co-injected with specific actin filament perturbants cytochalasin D (CD) or profilin into these cells, dextrans up to 20 kilodalton (kDa) moved from the injected cell into surrounding cells within 3–5 min. In contrast, when such dextrans were injected alone or co-injected with phalloidin into the mesophyll cells, they remained in the injected cells. Phalloidin co-injection slowed down or even inhibited CD- or profilin-elicited dextran cell-to-cell movement. Dextrans of 40 kDa or larger were unable to move out of the injected cell in the presence of CD or profilin. These data suggest that actin filaments may participate in the regulation of plasmodesmal transport by controlling the permeability of plasmodesmata. 相似文献
14.
Interactions between actin filaments and between actin filaments and membranes in quick-frozen and deeply etched hair cells of the chick ear 总被引:7,自引:13,他引:7
下载免费PDF全文

《The Journal of cell biology》1982,95(1):249-261
Replicas of the apical surface of hair cells of the inner ear (vestibular organ) were examined after quick freezing and rotary shadowing. With this technique we illustrate two previously undescribed ways in which the actin filaments in the stereocilia and in the cuticular plate are attached to the plasma membrane. First, in each stereocilium there are threadlike connectors running from the actin filament bundle to the limiting membrane. Second, many of the actin filaments in the cuticular plate are connected to the apical cell membrane by tiny branched connecting units like a "crow's foot." Where these "feet" contact the membrane there is a small swelling. These branched "feet" extend mainly from the ends of the actin filaments but some connect the lateral surfaces of the actin filaments as well. Actin filaments in the cuticular plate are also connected to each other by finer filaments, 3 nm in thickness and 74 +/- 14 nm in length. Interestingly, these 3-nm filaments (which measure 4 nm in replicas) connect actin filaments not only of the same polarity but of opposite polarities as documented by examining replicas of the cuticular plate which had been decorated with subfragment 1 (S1) of myosin. At the apicolateral margins of the cell we find two populations of actin filaments, one just beneath the tight junction as a network, the other at the level of the zonula adherens as a ring. The latter which is quite substantial is composed of actin filaments that run parallel to each other; adjacent filaments often show opposite polarities, as evidenced by S1 decoration. The filaments making up this ring are connected together by the 3-nm connectors. Because of the polarity of the filaments this ring may be a "contractile" ring; the implications of this is discussed. 相似文献
15.
Chemotaxis-deficient amiB-null mutant Dictyostelium cells show two distinct movements: (1) they extend protrusions randomly without net displacements; (2) they migrate persistently and unidirectionally in a keratocyte-like manner. Here, we monitored the intracellular distribution of phosphatidylinositol (3,4,5)-trisphosphate (PIP(3)) to gain insight into roles PIP(3) plays in those spontaneous motilities. In keratocyte-like cells, PIP(3) showed convex distribution over the basal membrane, with no anterior enrichment. In stalled cells, as well as in wild type cells, PIP(3) repeated wave-like changes, including emergence, expansion and disappearance, on the basal membrane. The waves induced lamellipodia when they approached the cell edge, and the advancing speed of the waves was comparable to the migration speed of the keratocyte-like cells. LY294002, an inhibitor of PI3 kinase, abolished PIP(3) waves in stalled cells and stopped keratocyte-like cells. These results together suggested that keratocyte-like cells are "surfing" on the PIP(3) waves by coupling steady lamellipodial protrusions to the PIP(3) waves. Simultaneous live observation of actin filaments and PIP(3) in wild type or stalled amiB(-) cells indicated that the PIP(3) waves were correlated with wave-like distributions of actin filaments. Most notably, PIP(3) waves often followed actin waves, suggesting that PIP(3) induces local depolymerization of actin filaments. Consistent with this idea, cortical accumulation of PIP(3) was often correlated with local retraction of the periphery. We propose that the waves of PIP(3) and actin filaments are loosely coupled with each other and play important roles in generating spontaneous cell polarity. 相似文献
16.
Heavy-meromyosin-decorated actin filaments: a simple method to preserve actin filaments for rotary shadowing 总被引:3,自引:0,他引:3
K Mabuchi 《Journal of structural biology》1991,107(1):22-28
It has become accepted that deep-freeze-drying at or below -90 degrees C is necessary to preserve the structure of supramolecular assemblies such as actin filaments (AFs) for metal shadowing. This has kept the metal shadowing technique from widespread use in the study of proteins complexed with AFs because of the limited availability of the apparatus for deep-freeze-drying. I report here that adsorption to freshly cleaved mica, treatment with buffered uranyl acetate in glycerol solution, rinsing, and removal of liquid eliminate the need of freeze-drying to preserve the structure of AFs. This technique, in combination with metal shadowing, was applied to the study of AFs decorated with heavy meromyosin (HMM). It was observed that (1) when HMM molecules are associated with single AFs in the majority of cases only one head of each HMM molecule makes contact at the point furthest from the neck region; (2) binding of HMM causes bundling of AFs, probably by the two heads of each molecule binding different filaments; and (3) the binding of HMM to the bundled AFs appears to be more stable than that to a single AF. This method of specimen preparation requires no freeze-drying and is therefore easily applicable to other large protein complexes. 相似文献
17.
Structural interactions of actin filaments and endoplasmic reticulum in honeybee photoreceptor cells
Otto Baumann 《Cell and tissue research》1992,268(1):71-79
Summary Fluorescent phallotoxins and heavy meromyosin were used to reveal the organization of the actin cytoskeleton in honeybee photoreceptor cells, and the relationship of actin filaments to the submicrovillar, palisade-like cisternae of the endoplasmic reticulum (ER). Bundles of unipolar actin filaments (pointed end towards the cell center) protrude from the microvillar bases and extend through cytoplasmic bridges that traverse the submicrovillar ER. Within the cytoplasmic bridges, the filaments are regularly spaced and tightly apposed to the ER membrane. In addition, actin filaments are deployed close to the microvillar bases to form a loose web. Actin filaments are scarce in cell areas remote from the rhabdom; these areas contain microtubule-associated ER domains. The results suggest that the actin system of the submicrovillar cytoplasm shapes the submicrovillar ER cisternae, and that the distinct ER domains interact with different cytoskeletal elements. 相似文献
18.
Hilpelä P Oberbanscheidt P Hahne P Hund M Kalhammer G Small JV Bähler M 《Molecular biology of the cell》2003,14(8):3242-3253
Functionally different subsets of actin filament arrays contribute to cellular organization and motility. We report the identification of a novel subset of loose actin filament arrays through regulated association with the widely expressed protein SWAP-70. These loose actin filament arrays were commonly located behind protruding lamellipodia and membrane ruffles. Visualization of these loose actin filament arrays was dependent on lamellipodial protrusion and the binding of the SWAP-70 PH-domain to a 3'-phosphoinositide. SWAP-70 with a functional pleckstrin homology-domain lacking the C-terminal 60 residues was targeted to the area of the loose actin filament arrays, but it did not associate with actin filaments. The C-terminal 60 residues were sufficient for actin filament association, but they provided no specificity for the subset of loose actin filament arrays. These results identify SWAP-70 as a phosphoinositide 3-kinase signaling-dependent marker for a distinct, hitherto unrecognized, array of actin filaments. Overexpression of SWAP-70 altered the actin organization and lamellipodial morphology. These alterations were dependent on a proper subcellular targeting of SWAP-70. We propose that SWAP-70 regulates the actin cytoskeleton as an effector or adaptor protein in response to agonist stimulated phosphatidylinositol (3,4)-bisphosphate production and cell protrusion. 相似文献
19.
Zigmond SH 《Current opinion in cell biology》2004,16(1):99-105
Formins are proteins best defined by the presence of the unique, highly conserved formin homology domain 2 (FH2). FH2 is necessary and sufficient to nucleate an actin filament in vitro. The FH2 domain also binds to the filament's barbed end, modulating its elongation and protecting it from capping proteins. FH2 itself appears to be a processive cap that walks with the barbed end as it elongates. 相似文献
20.
Summary The ultrastructural study of cross sections of normal skeletal muscle cells showed the existence of irregular patterns of actin filaments in connection with the hexagonal pattern of the myosin filaments. The actin filaments surrounding each myosin filament vary in number from 6 to 11. The most frequent relationship is 9 to 1, followed by 10 to 1 and 8 to 1. The hexagonal pattern of actin filaments was observed only in the 6 to 1 arrays; as the actin filaments increase in number, they tend to form different polygons or circles around the myosin filaments. All described patterns may occur in each sarcomere. The actin to myosin filament ratio varies from 3 to 4 within each individual myofibril. The described variability of the actin filaments arrays leads to several difficulties in an explanation of the mechanism of muscular contraction.Director, Chief of Section, Histology. Profesor Agregado de Embriología e HistologíaProfesor Adjunto de Embriología e HistologíaResidente de Anatomía Patol'ogica de la Ciudad Sanitaria La Paz 相似文献