首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spheroplasts of Escherichia coli mutants were used to investigate the roles of the inner and outer membranes in the transport of iron. tonA mutants, known to be defective in an outer membrane component of the ferrichrome transport system, regained the ability to transport ferrichrome when converted to spheroplasts. On the other hand, the tonB mutant was unable to transport ferric enterochelin in either whole cells or spheroplasts. This implies that an element of the inner membrane is affected. fep mutants were also unable to transport ferric enterochelin, and fell into two classes, fepA and fepB. Spheroplasts of the former class transported ferric enterochelin, and those of the latter did not. This implies that the fepA mutants are defective in ferric enterochelin transport across the outer membrane, and that fepB mutants probably lack the facility to transport ferric enterochelin across the inner membrane. Colicin B action on fepA mutants was found to differ from that on fepB mutants.  相似文献   

2.
E Fischer  K Günter    V Braun 《Journal of bacteriology》1989,171(9):5127-5134
The exb locus in Escherichia coli consists of two genes, termed exbB and exbD. Exb functions are related to TonB function in that most TonB-dependent processes are enhanced by Exb. Like tonB mutants, exb mutants were resistant to colicin M and albomycin but, in contrast to tonB mutants, showed only reduced sensitivity to colicins B and D. Overexpressed tonB on the multicopy vector pACYC177 largely restored the sensitivity of exb mutants to colicins B, D, and M but only marginally increased sensitivity to albomycin. Suppression of the btuB451 mutation in the structural gene for the vitamin B12 outer membrane receptor protein by a mutation in tonB occurred only in an exb+ strain. Degradation of the unstable overproduced TonB protein was prevented by overproduced ExbB protein. The ExbB protein also stabilized the ExbD protein. Pulse-chase experiments with radiolabeled ferrichrome revealed release of ferrichrome from exbB, tonB, and fhuC mutants, showing that ferrichrome had not crossed the cytoplasmic membrane. It is concluded that the ExbB and ExbD proteins contribute to the activity of TonB and, like TonB, are involved in receptor-dependent transport processes across the outer membrane.  相似文献   

3.
Four chromosomal genes, tonA (fhuA), fhuB, tonB, and exbB, were required for the transport of iron(III)-aerobactin specified by the plasmids ColV-K311, ColV-K229, ColV-K328, and ColV-K30. These genes also determine the transport system in Escherichia coli for the iron ionophore ferrichrome. Aerobactin and ferrichrome are both iron ligands of the hydroxamate type, but they are of different structure. The ColV plasmids determine an outer membrane protein that serves as a receptor for cloacin. Cloacin-resistant mutants were devoid of iron(III)-aerobactin transport but were unimpaired in ferrichrome transport. We conclude that for iron(III)-aerobactin transport two outer membrane proteins, the TonA and the cloacin receptor protein, have to interact functionally or structurally or both.  相似文献   

4.
Host range mutants of phage T1 (T1h), which productively infected tonB mutants of Escherichia coli, were isolated. The phage mutants were inactivated by isolated outer membranes of E. coli in contrast to the wild-type phage, which only adsorbed reversibly. For the infection process, the tonB function is apparently only required for the irreversible adsorption of the phage T1, but not for the transfer of the phage DNA through the outer membrane and the cytoplasmic membrane of the cell. Mutants of the tonA gene expressing normal amounts of outer membrane receptor proteins were isolated and found to be partially sensitive to phage T5 and resistant to the phages T1 and T1h, colicin M, and albomycin and unable to take up iron as a ferrichrome complex. One tonA mutant remained partially sensitive to T5, colicin M, and albomycin and supported growth of T1h (not of T1) with the same plating efficiency as the parent strain. Only a small region of the tonA receptor protein seems to function for all the very different substrates. A newly isolated host range mutant of T5 (T5h) adsorbed faster to tonA(+) cells than did wild-type T5 and infected tonA missense mutants resistant to wild-type T5. The interplay of the tonA with the tonB function was observed with phage T5 infection, although T5 required only the tonA receptor. Ferrichrome inhibited plaque formation of T5 only when plated on tonB mutants. Adsorption of T5 to cells in liquid medium was influenced by ferrichrome as follows: complete inhibition by 0.1 muM ferrichrome with tonB mutants, not more than 35% inhibition by 1 to 100 muM ferrichrome with the tonB(+) parent strain in the presence of glucose as energy source, and 90% inhibition by 1 muM ferrichrome with partially starved parent cells. We conclude that there exist different functional states of the receptor protein that depend on the energy state of the cell and the tonB function. The latter seems to be required only for translocation processes with outer membrane proteins involved.  相似文献   

5.
In Bradyrhizobium japonicum, iron uptake from ferric siderophores involves selective outer membrane proteins and non-selective periplasmic and cytoplasmic membrane components that accommodate numerous structurally diverse siderophores. Free iron traverses the cytoplasmic membrane through the ferrous (Fe2+) transporter system FeoAB, but the other non-selective components have not been described. Here, we identify fsrB as an iron-regulated gene required for growth on iron chelates of catecholate- and hydroxymate-type siderophores, but not on inorganic iron. Utilization of the non-physiological iron chelator EDDHA as an iron source was also dependent on fsrB. Uptake activities of 55Fe3+ bound to ferrioxamine B, ferrichrome or enterobactin were severely diminished in the fsrB mutant compared with the wild type. Growth of the fsrB or feoB strains on ferrichrome were rescued with plasmid-borne E. coli fhuCDB ferrichrome transport genes, suggesting that FsrB activity occurs in the periplasm rather than the cytoplasm. Whole cells of an fsrB mutant are defective in ferric reductase activity. Both whole cells and spheroplasts catalyzed the demetallation of ferric siderophores that were defective in an fsrB mutant. Collectively, the data support a model whereby FsrB is required for reduction of iron and its dissociation from the siderophore in the periplasm, followed by transport of the ferrous ion into the cytoplasm by FeoAB.  相似文献   

6.
Strains of Escherichia coli K-12 defective in their ability to utilize exogenously supplied iron due to genetic defects in the entF, tonB, fes, or fep gene exhibited elevated levels of the specific outer-membrane receptor for colicin Ia when compared with parental strains. Although entF, fes, and fep strains showed a higher degree of Ia sensitivity than did the parental strains, tonB strains were resistant to colicin action. The colicin insensitivity of tonB strains was not due to hyperproduction of enterochelin. Growth in medium containing 101.8 muM Fe2+ led to a lowering of receptor levels in all the above strains and resulted in decreased colicin Ia sensitivity in all strains except tonB, which was already at maximal resistance. Growth in citrate plus iron (1.8 muM) or in ferrichrome resulted in a substantial reduction in both receptor levels and Ia sensitivity in ent, fes, and fep strains but had no effect on receptor levels in tonB strains. Growth in citrate did not lead to an alteration in receptor levels in a mutant specifically defective in citrate-mediated iron transport. The presence of enterochelin during growth led to a reduction in the number of receptors in the parental and ent strains but not in tonB, fes, or fep strains. Thus, in all cases examined, there was an inverse relationship between the number of colicin receptors per cell and the ability of the strain to take up iron from the growth medium. This suggests that under conditions of iron limitation there is a derepression of colicin Ia receptor biosynthesis. These results may point to a role of the colicin I receptor in iron uptake.  相似文献   

7.
Iron transport systems of Serratia marcescens.   总被引:2,自引:0,他引:2       下载免费PDF全文
A Angerer  B Klupp    V Braun 《Journal of bacteriology》1992,174(4):1378-1387
Serratia marcescens W225 expresses an unconventional iron(III) transport system. Uptake of Fe3+ occurs in the absence of an iron(III)-solubilizing siderophore, of an outer membrane receptor protein, and of the TonB and ExbBD proteins involved in outer membrane transport. The three SfuABC proteins found to catalyze iron(III) transport exhibit the typical features of periplasmic binding-protein-dependent systems for transport across the cytoplasmic membrane. In support of these conclusions, the periplasmic SfuA protein bound iron chloride and iron citrate but not ferrichrome, as shown by protection experiments against degradation by added V8 protease. The cloned sfuABC genes conferred upon an Escherichia coli aroB mutant unable to synthesize its own enterochelin siderophore the ability to grow under iron-limiting conditions (in the presence of 0.2 mM 2.2'-dipyridyl). Under extreme iron deficiency (0.4 mM 2.2'-dipyridyl), however, the entry rate of iron across the outer membrane was no longer sufficient for growth. Citrate had to be added in order for iron(III) to be translocated as an iron citrate complex in a FecA- and TonB-dependent manner through the outer membrane and via SfuABC across the cytoplasmic membrane. FecA- and TonB-dependent iron transport across the outer membrane could be clearly correlated with a very low concentration of iron in the medium. Expression of the sfuABC genes in E. coli was controlled by the Fur iron repressor gene. S. marcescens W225 was able to synthesize enterochelin and take up iron(III) enterochelin. It contained an iron(III) aerobactin transport system but lacked aerobactin synthesis. This strain was able to utilize the hydroxamate siderophores ferrichrome, coprogen, ferrioxamine B, rhodotorulic acid, and schizokinen as sole iron sources and grew on iron citrate as well. In contrast to E. coli K-12, S. marcescens could utilize heme. DNA fragments of the E. coli fhuA, iut, exbB, and fur genes hybridized with chromosomal S. marcescens DNA fragments, whereas no hybridization was obtained between S. marcescens chromosomal DNA and E. coli fecA, fhuE, and tonB gene fragments. The presence of multiple iron transport systems was also indicated by the increased synthesis of at least five outer membrane proteins (in the molecular weight range of 72,000 to 87,000) after growth in low-iron media. Serratia liquefaciens and Serratia ficaria produced aerobactin, showing that this siderophore also occurs in the genus Serratia.  相似文献   

8.
Abstract The tonB gene product is necessary for the energy-dependent transport of ferric chelates and vitamin B12 across the Escherichia coli outer membrane. When carried on multicopy plasmids, the cloned tonB gene complemented tonB hosts, restoring transport of ferri-siderophone complexes and vitamin B12, and susceptibility to the group B colicins and phage ф80. The levels of these activities were all markedly lower than when the tonB + gene was present in single copy. This depression of TonB function occurred even when the chromosome carried the normal tonB + allele, but plasmids carrying only a portion of the tonB gene, including the 5'-regulatory region, were not inhibitory.  相似文献   

9.
Vibrio cholerae was found to have two sets of genes encoding TonB, ExbB and ExbD proteins. The first set ( tonB1, exbB1, exbD1 ) was obtained by complementation of a V. cholerae tonB mutant. In the mutant, a plasmid containing these genes permitted transport via the known V. cholerae high-affinity iron transport systems, including uptake of haem, vibriobactin and ferrichrome. When chromosomal mutations in exbB1 or exbD1 were introduced into a wild-type V. cholerae background, no defect in iron transport was noted, indicating the existence of additional genes that can complement the defect in the wild-type background. Another region of the V. cholerae chromosome was cloned that encoded a second functional TonB/Exb system ( tonB2, exbB2, exbD2 ). A chromosomal mutation in exbB2 also failed to exhibit a defect in iron transport, but a V. cholerae strain that had chromosomal mutations in both the exbB1 and exbB2 genes displayed a mutant phenotype similar to that of an Escherichia coli tonB mutant. The genes encoding TonB1, ExbB1, ExbD1 were part of an operon that included three haem transport genes ( hutBCD ), and all six genes appeared to be expressed from a single Fur-regulated promoter upstream of tonB1 . A plasmid containing all six genes permitted utilization of haem by an E. coli strain expressing the V. cholerae haem receptor, HutA. Analysis of the hut genes indicated that hutBCD, which are predicted to encode a periplasmic binding protein (HutB) and cytoplasmic membrane permease (HutC and HutD), were required to reconstitute the V. cholerae haem transport system in E. coli. In V. cholerae , the presence of hutBCD stimulated growth when haemin was the iron source, but these genes were not essential for haemin utilization in V. cholerae .  相似文献   

10.
Two genes involved in iron utilization in Campylobacter coli VC167 T1 have been characterized. The cfrA gene encodes a protein with a predicted Mr of 77,653 which, after processing of the leader sequence, has a predicted Mr of 75,635. This protein has significant sequence identity to siderophore receptors of several bacteria, and site-specific mutants defective in cfrA do not synthesize one of two major iron-repressible outer membrane proteins. An adjacent gene encodes a TonB-like protein; a mutant in this gene lost the ability to utilize hemin, ferrichrome, and enterochelin as iron sources. The cfrA and tonB genes of VC167 T1 hybridized to all strains of C. coli and most strains of C. jejuni examined but did not hybridize to several other strains of C. jejuni, suggesting that the thermophilic campylobacters can be separated into two categories based on the presence of these two iron utilization genes.  相似文献   

11.
The functional interaction of outer memberane proteins of E. coli can be studied using phage and colicin receptors which are essential components of penetration systems. The uptake of ferric iron in the form of the ferrichrome complex requires the ton A and ton B functions in the outer membrane of E. coli. The ton A gene product is the receptor protein for phage T5 and is required together with the ton B function by the phages T1 anf ?80 to infect cells and by colicin M and the antibiotic albomycin, a structural analogue of ferrichrome, to kill cells. The ton B function is necessary for the uptake of ferric iron complexed by citrate. Iron complexed by enterochelin is only transported in the presence of the ton B and feu functions. Cells which have lost the feu function are resistant to the colicins B, I or V while ton B mutants are resistant to all colicins. The interaction of the ton A, Ton B, and feu functions apparently permits quite different “substrates” to overcome the permeablility barrier of the outer membrane. It was shown for ferrichrome dependent iron uptake that the complexing agent was not altered and could be used repeatedly. Only very low amounts of 3H-labeled ferrichrome were found in the cell. It is possible that the iron is mobilized in the membrane and that desferriferrichrome is released into the medium without having entered the cytoplasm. Growth on ferrichrome as the sole iron source waw used to select revertants of T5 resistant ton A mutants. All revertants exhibited wild-type properties with the exception of partial revertants. In these 4 strains, as in the ton A mutants, the ton A protein was not detectable by SDS polyacrylamide gel electrophoreses of outer membranes. Albomycin resistant mutants were selected and shown to fall into 5 categories: (1) ton A; (2) ton B mutants; (3) mutants with no iron transport defects and normal ton A/ton B functions, which might be target site mutants; (4) mutants which were deficient in ferrichrome-mediated iron uptake but had normal ton A/ton B functions. We tentatively consider that the defect might be located in the active transport system of the cytoplasmic membrane; (5) a variety of mutants with the following general properties: most of them were resistant to colicin M, transported iron poorly, and, like ton B mutants, contained additional proteins in the outer membrane. The outer membrane protein patterns of wild-type and ton B mutant strains were compared by slab gel electrophoresis in an attempt to identify a ton B protein. It was observed that under most growth conditions, ton B mutants overproduced 3 proteins of molecular weights 74,000–83,000. In extracted, iron-deficient medium, both the wild-type and ton B mutant strains had similar large amounts of these proteins in their outer membranes. The appearance of these proteins was suppressed by excess iron in both wild-type and mutant. From this evidence it is apparent that the proteins appear as a response to low intracellular iron rather than being controlled by the ton B gene. The nature of these proteins and their possible role in iron transport is disussed.  相似文献   

12.
K J Heller  R J Kadner  K Günther 《Gene》1988,64(1):147-153
In cells of Escherichia coli, the function of the tonB gene is needed for energy-dependent transport processes mediated by the outer-membrane receptors for iron siderophore complexes and vitamin B12. The btuB451 mutation has the same effect on vitamin B12 transport as does a tonB mutation. When a btuB451 strain carried a plasmid with the intact tonB gene, partial revertant strains were isolated which had acquired the ability to grow on 5 nM vitamin B12. This suppression activity was associated with the plasmid, suggesting that a mutation within the tonB gene on the plasmid allowed the mutant BtuB receptor to function in the transport of the vitamin. The nucleotide sequence of the entire tonB gene of ten independently isolated suppressing plasmids was determined. Only a single nucleotide change had occurred in each of the cases. The same codon was always affected resulting in the conversion of glutamine-165 to a leucine in seven of the ten isolates and to a lysine in the other three. The phenotype of strains carrying both types of altered tonB genes showed the retention of their function for other TonB-dependent processes in addition to their suppressor properties with respect to the btuB451 mutation. The fact that mutations suppressing the btuB451 mutation occurred in the tonB gene suggests that there is a direct interaction between TonB and TonB-dependent receptors in the outer membrane of E. coli.  相似文献   

13.
During the transport of iron as ferrichrome complex into cells of Escherichia coli K-12, the ligand was modified and excreted into the medium. The rate of the formation of the modified product corresponded with the rate of iron transport. The modified product showed a decreased affinity for ferric iron and did not serve as an effective iron ionophore. After all of the ferrichrome had been converted, the modified product was taken up into the cell in an iron-free form. The uptake of ferrichrome and of the modified product depended on the transport system specified by the tonA and tonB genes. The modified product could be converted back into ferrichrome by mild acid or alkaline hydrolysis. One mole of acetate was released per mole of ferrichrome. It is proposed that one N-hydroxyl group of ferrichrome is acetylated to explain the low affinity for iron as the N-hydroxyl groups form the ligands for iron (III). A weak ester linkage by which the acetyl group is covalently bonded would account for the easy hydrolysis. The iron-free form of ferrichrome, deferri-ferrichrome, was also rapidly converted when incubated with cells with a functional transport system. It is therefore likely that iron is released from ferrichrome by reduction before modification takes place. The conversion of the ligand could be a mechanism by which cells rid themselves of a potentially deleterious ligand for iron in the cytoplasm. A possible role in ferrichrome transport is discussed.  相似文献   

14.
15.
Ferrichrome-promoted iron uptake in Escherichia coli K12 is strictly dependent upon the tonA gene product, a 'minor' outer membrane protein. By selection for mutants of E. coli resistant to phages which require 'major' outer membrane proteins as receptors, strains with pronounced protein deficiencies were constructed. Such strains were tested for anomalous behaviour of ferrichrome transport. No significant differences in iron uptake were detected in E. coli K12 strains with markedly reduced amounts of protein I. However, a reduction in the initial velocity (up to 40%) was observed in E. coli deficient in outer membrane protein II. This difference was only evident when cells were grown under iron-starvation conditions; it was abolished when cells were grown in rich medium. Kinetic parameters for ferrichrome transport were determined for maximum velocity but for Km; double reciprocal plots showed a biphasic nature, probably attributable to a limited number of outer membrane binding sites and to the multi-component nature of the ferrichrome-iron transport system.  相似文献   

16.
FhuA in the outer membrane of Escherichia coli serves as a transporter for ferrichrome, the antibiotics albomycin and rifamycin CGP4832, colicin M, and as receptor for phages T1, T5 and phi80. The previously determined crystal structure reveals that residues 160-714 of the mature protein form a beta-barrel that is closed from the periplasmic side by the globular N-proximal fragment, residues 1-159, designated the cork. In this study, deletion of the cork resulted in a stable protein, FhuADelta5-160, that was incorporated in the outer membrane. Cells that synthesized FhuADelta5-160 displayed a higher sensitivity to large antibiotics such as erythromycin, rifamycin, bacitracin and vancomycin, and grew on maltotetraose and maltopentaose in the absence of LamB. Higher concentrations of ferrichrome supported growth of a tonB mutant that synthesized FhuADelta5-160. These results demonstrate non-specific diffusion of compounds across the outer membrane of cells that synthesize FhuADelta5-160. However, growth of a FhuADelta5-160 tonB wild-type strain occurred at low ferrichrome concentrations, and ferrichrome was transported at about 45% of the FhuA wild-type rate despite the lack of ferrichrome binding sites provided by the cork. FhuADelta5-160 conferred sensitivity to the phages and colicin M at levels similar to that of wild-type FhuA, and to albomycin and rifamycin CGP 4832. The activity of FhuADelta5-160 depended on TonB, although the mutant lacks the TonB box (residues 7-11) previously implicated in the interaction of FhuA with TonB. CCCP inhibited tonB-dependent transport of ferrichrome through FhuADelta5-160. FhuADelta5-160 still functions as a specific transporter, and sites in addition to the TonB box are involved in the TonB-mediated response of FhuA to the proton gradient of the cytoplasmic membrane. It is proposed that TonB interacts with the TonB box of FhuA and with the beta-barrel to release ferrichrome from the FhuA binding sites and to open the channel in FhuA. For transport of ferrichrome through the open channel of FhuADelta5-160, interaction of TonB with the beta-barrel is sufficient to release ferrichrome from the residual binding sites at the beta-barrel and to induce the active conformation of the L4 loop at the cell surface for infection by the TonB-dependent phages T1 and phi80.  相似文献   

17.
The ability to utilize the siderophore ferrichrome as an iron source was found to be a variable trait in a field population of mesorhizobia. To investigate the genetic basis of this variation, genes required for ferrichrome utilization (fhu genes) were characterized in Mesorhizobium strain R88B, an Fhu(+) member of the population. Functional fhu genes were present at three loci. Two genes of the ferrichrome ABC transporter, fhuBD, were identified at an fhu1 locus downstream of the symbiosis island that was integrated at the phe-tRNA gene. The fhuA gene encoding the ferrichrome outer membrane receptor was located in the fhu2 locus together with non-functional fhuDB genes, while the fhuC gene encoding the ATPase required for ferrichrome transport was part of the fhu3 locus that included genes required to form a functional TonB complex. None of the fhu genes were present in the sequenced Mesorhizobium loti strain MAFF303099. Comparisons with MAFF303099 suggested that the fhu2 and fhu3 loci evolved through small-scale (< 5 kb) acquisitions and deletions. Despite their independent origins, the three fhu loci were coordinately regulated in response to iron availability. Within the mesorhizobial population, the ability to utilize ferrichrome was most strongly correlated with the presence of the fhuA gene. We hypothesize that the ferrichrome transport system evolved through cycles of gene acquisition and deletion, with the positive selection pressure of an iron-poor or siderophore-rich environment being offset by the negative pressure of the outer membrane receptor being a target for phage.  相似文献   

18.
Streptonigrin was used to select mutants impaired in the citrate-dependent iron transport system of Escherichia coli K-12. Mutants in fecA and fecB could not transport iron via citrate. fecA-lac and fecB-lac operon fusions were constructed with the aid of phage Mu dl(Ap lac). Strains deficient in ferric dicitrate transport which were mutated in fecB were as inducible as transport-active strains. They expressed the FecA outer membrane protein and beta-galactosidase of the fecB-lac operon fusions. In contrast, all fecA::lac mutants and fecA mutants induced with N-methyl-N'-nitro-N-nitrosoguanidine did not respond to ferric dicitrate supplied in the growth medium. tonB fecB mutants which were lacking all tonB-related functions were not inducible. We conclude that binding of iron in the presence of citrate to the outer membrane receptor protein is required for induction of the transport system. In addition, the tonB gene has to be active. However, iron and citrate must not be transported into the cytoplasm for the induction process. These data support our previous conclusion of an exogenous induction mechanism. Mutants in fur expressed the transport system nearly constitutively. In wild-type cells limiting the iron concentration in the medium enhanced the expression of the transport system. Thus, the citrate-dependent iron transport system shares regulatory devices with the other iron transport systems in E. coli and, in addition, requires ferric dicitrate for induction.  相似文献   

19.
The exbBD genes of Pseudomonas aeruginosa PAO were cloned by complementation of the growth defect of an Escherichia coli exbB tolQ double mutant on iron-restricted medium. Nucleotide sequence analysis confirmed that these genes are contiguous and preceded by a second tonB gene in this organism, which we have designated tonB2. lacZ promoter fusions confirmed that expression of the tonB2-exbB-exbD genes is increased under conditions of iron limitation. Deletions within any of these genes, in contrast to deletions in the first tonB gene, tonB1, did not adversely affect growth on iron-restricted medium. On the other hand, tonB1 tonB2 double mutants were more compromised as regards growth in an iron-restricted medium than a tonB1 deletion, indicating that TonB2 could partially replace TonB1 in its role in iron acquisition. TonB1 but not TonB2 deletion strains were also compromised as regards the utilization of hemin or hemoglobin as sole iron sources, indicating that heme transport requires TonB1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号