首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nucleotide sequence of the promoter-distal region of the tra operon of R100 was determined. There are five open reading frames in the region between traT and finO, and their protein products were identified. Nucleotide sequences of plasmid F corresponding to the junction regions among the open reading frames seen in R100 were also determined. Comparison of these nucleotide sequences revealed strong homology in the regions containing traD, traI and an open reading frame (named orfD). The TraD protein (83,899 Da) contains three hydrophobic regions, of which two are located near the amino-terminal region. This protein also contains a possible ATP-binding consensus sequence at the amino-terminal region and a characteristic repeated peptide sequence (Gln-Gln-Pro)10 at the carboxy-terminal region. The TraI protein (191,679 Da) contains the sequence motif conserved in an ATP-dependent DNA helicase superfamily in its carboxy-terminal region. The protein product of orfD, which is probably a new tra gene (named traX), contains 65% hydrophobic amino acids, especially rich in alanine and leucine. There exist non-homologous regions between R100 and F that could be represented as four I-D (insertion or deletion) loops in heteroduplex molecules. Assignment of each loop to the strand of R100 or F was , however, found to be the reverse from that previously assumed. The three I-D loops that were located between traT and traD, between traD and traI, and between traI and finO had no terminal inverted repeat sequences nor had they any homology with known insertion sequences, while the fourth was IS3, located within the finO gene of F. The sequences in the I-D loops, except IS3, may also code for proteins that are, however, likely to be nonessential for transfer of plasmids.  相似文献   

2.
The DNA encoding the surface exclusion genes traS and traT of the F sex factor of Escherichia coli K-12 has been sequenced and the biological activity of the various terminators and promoters determined. The data show that traS encodes a 16,861 Mr protein with no apparent signal sequence, as expected for its cytoplasmic membrane location. The protein is extremely hydrophobic. traS has its own promoter and a weak terminator region follows the gene. After the traS termination loop there is a small intergenic region before the traT promoter. The traT gene encodes a 25,932 Mr precursor for the 23,709 Mr mature protein. The amino-terminal signal peptide is 21 amino acid residues, consistent with it being an outer membrane lipoprotein. A very strong termination loop follows the gene and adjacent to this a further loop can be predicted from the sequence. These secondary structures would be expected to enhance the stability of the mRNA in the presence of 3' specific ribonucleases accounting for the apparent long half-life of the messenger. The amino acid sequence of the mature product of traT of F differs from that of R100 by only a single amino acid substitution (Gly for Ala at position 119), whereas that of pED208 (Folac) differs at 40 positions. traT lies in a region of heteroduplex homology between F and R100, and the nucleotide sequence confirms this and demonstrates that this homology breaks down immediately preceding and following the coding region. Sequence analysis shows that this is also so for pED208. Thus the entire traS of F, R100 and pED208 are very different at the DNA level. An open reading frame, preceded by a typical promoter sequence and a weak and poorly located Shine-Dalgarno sequence, follows traT and corresponds to the start of traD. Alone, this promoter appears to be inactive.  相似文献   

3.
The DNA transfer stage of conjugation requires the products of the F sex factor genes traMYDIZ and the cis-acting site oriT. Previous interpretation of genetic and protein analyses suggested that traD, traI, and traZ mapped as contiguous genes at the distal end of the transfer operon and saturated this portion of the F transfer region (which ends with an IS3 element). Using antibodies prepared against the purified TraD and TraI proteins, we analyzed the products encoded by a collection of chimeric plasmids constructed with various segments of traDIZ DNA. We found the traI gene to be located 1 kilobase to the right of the position suggested on previous maps. This creates an unsaturated space between traD and traI where unidentified tra genes may be located and leaves insufficient space between traI and IS3 for coding the 94-kilodalton protein previously thought to be the product of traZ. We found that the 94-kilodalton protein arose from a translational restart and corresponds to the carboxy terminus of traI; we named it TraI*. The precise physical location of the traZ gene and the identity of its product are unknown. The oriT nicking activity known as TraZ may stem from unassigned regions between traD and traI and between traI and IS3, but a more interesting possibility is that it is actually a function of traI. On our revised map, the position of a previously detected RNA polymerase-binding site corresponds to a site at the amino terminus of traI rather than a location 1 kilobase into the coding region of the gene. Furthermore, the physical and genetic comparison of the F traD and traI genes with those of the closely related F-like conjugative plasmids R1 and R100 is greatly simplified. The translational organization we found for traI, together with its identity as the structural gene for DNA helicase I, suggests a possible functional link to several other genes from which translational restart polypeptides are expressed. These include the primases of the conjugative plasmids ColI and R16, the primase-helicase of bacteriophage T7, and the cisA product (nickase) of phage phi X174.  相似文献   

4.
A 6.9-kilobase region of the Escherichia coli F plasmid containing the 3' half of the traD gene and the entire traI gene (encodes the TraI protein, DNA helicase I and TraI, a polypeptide arising from an internal in-frame translational start in traI) has been sequenced. A previously unidentified open reading frame (tentatively trbH) lies between traD and traI.  相似文献   

5.
D S Cram  S M Loh  K C Cheah  R A Skurray 《Gene》1991,104(1):85-90
The nucleotide sequence of the region downstream of transfer gene traI, including fertility inhibition gene finO, on the conjugative plasmids F and R6-5, has been determined. Analysis of the F sequence revealed two open reading frames (ORF's), ORF248 and ORF186; ORF186 (finO) is interrupted by the insertion of IS3. The R6-5 sequence also contained ORF248 and an intact ORF186, although an additional ORF (ORF286) was located between the two genes. ORF248, which we have designated traX, and ORF186 (finO) are highly conserved on both plasmids. The organisation of these genes indicates that traI and traX on F, and traI, traX and ORF286 on R6-5 are co-transcribed from their respective promoters upstream of traI. Sequences homologous to traX were detected on a range of conjugative F-like plasmids, whereas sequences homologous to ORF286 were only found on plasmids R6-5, R100 and R1. The conservation of traX sequences suggests a functional importance for that gene and/or its product.  相似文献   

6.
7.
Using the vector pGEM-4-blue, a 4,251-base-pair DNA fragment containing the gene for the surface (S)-layer protein of Bacillus sphaericus 2362 was cloned into Escherichia coli. Determination of the nucleotide sequence indicated an open reading frame (ORF) coding for a protein of 1,176 amino acids with a molecular size of 125 kilodaltons (kDa). A protein of this size which reacted with antibody to the 122-kDa S-layer protein of B. sphaericus was detected in cells of E. coli containing the recombinant plasmid. Analysis of the deduced amino acid sequence indicated a highly hydrophobic N-terminal region which had the characteristics of a leader peptide. The first amino acid of the N-terminal sequence of the 122-kDa S-layer protein followed the predicted cleavage site of the leader peptide in the 125-kDa protein. A sequence characteristic of promoters expressed during vegetative growth was found within a 177-base-pair region upstream from the ORF coding for the 125-kDa protein. This putative promoter may account for the expression of this gene during the vegetative growth of B. sphaericus and E. coli. The gene for the 125-kDa protein was followed by an inverted repeat characteristic of terminators. Downstream from this gene (11.2 kilobases) was an ORF coding for a putative 80-kDa protein having a high sequence similarity to the 125-kDa protein. Evidence was presented indicating that this gene is cryptic.  相似文献   

8.
  相似文献   

9.
K C Cheah  A Ray  R Skurray 《Plasmid》1986,16(2):101-107
We have shown, using an F-derived Tra+ cosmid in conjunction with the infected-cell translational system and a time-course study, that one of the surface exclusion genes, traT, can be expressed independently of the promoter of the traY----Z operon, PYZ, and in the absence of a normal quantity of traJ gene product. Studies with deleted derivatives of the cosmid pRS2405 confirmed this independence and also indicated that expression of traD can be independent of PYZ. We propose that the expression of traT by these deleted plasmids is directed from a traJ-independent promoter, PT, located adjacent to traT.  相似文献   

10.
The nucleotide sequence of the traT gene present in the virulence-associated plasmid of Salmonella typhimurium was determined. The predicted TraT protein encoded by this gene was found to consist of 243 amino acids and to resemble the known TraT proteins of the plasmids of the F incompatibility group. Thus it contains a signal sequence of 20 amino acids, an amino-terminal lipid attachment site, and two strongly hydrophobic regions close to each other in the mature protein. A mutation leading to increased permeability of the outer membrane to hydrophobic agents, previously localized to the traT gene, was shown to change a glycine residue to arginine within one of these hydrophobic regions. The same principle was found to apply to TraT of R6-5: the introduction, by site-directed mutagenesis, of either positively or negatively charged amino acids or the helix-disrupting proline in the corresponding hydrophobic region led to increased hydrophobic permeability of the outer membrane.  相似文献   

11.
The 45-kDa assembly protein of human cytomegalovirus is encoded by the C-terminal portion of the UL80 open reading frame (ORF). For herpes simplex virus, packaging of DNA is accompanied by cleavage of its assembly protein precursor at a site near its C terminus, by a protease encoded by the N-terminal region of the same ORF (F. Liu and B. Roizman, J. Virol. 65:5149-5156, 1991). By analogy with herpes simplex virus, we investigated whether a protease is contained within the N-terminal portion of the human cytomegalovirus UL80 ORF. The entire UL80 ORF was expressed in Escherichia coli, under the control of the phage T7 promoter. UL80 should encode a protein of 85 kDa. Instead, the wild-type construct produces a set of proteins with molecular masses of 50, 30, 16, 13, and 5 kDa. In contrast, when mutant UL80 is deleted of the first 14 amino acids, it produces only an 85-kDa protein. These results suggest that the UL80 polyprotein undergoes autoproteolysis. We demonstrate by deletional analysis and by N-terminal sequencing that the 30-kDa protein is the protease and that it originates from the N terminus of UL80. The UL80 polyprotein is cleaved at the following three sites: (i) at the C terminus of the assembly protein domain, (ii) between the 30- and 50-kDa proteins, and (iii) within the 30-kDa protease itself, which yields the 16- and 13-kDa proteins and may be a mechanism to inactivate the protease.  相似文献   

12.
The nucleotide sequence of the protective antigen (PA) gene from Bacillus anthracis and the 5' and 3' flanking sequences were determined. PA is one of three proteins comprising anthrax toxin; and its nucleotide sequence is the first to be reported from B. anthracis. The open reading frame (ORF) is 2319 bp long, of which 2205 bp encode the 735 amino acids of the secreted protein. This region is preceded by 29 codons, which appear to encode a signal peptide having characteristics in common with those of other secreted proteins. A consensus TATAAT sequence was located at the putative -10 promoter site. A Shine-Dalgarno site similar to that found in genes of other Bacillus sp. was located 7 bp upstream from the ATG start codon. The codon usage for the PA gene reflected its high A + T (69%) base composition and differed from those of genes for bacterial proteins from most other sequences examined. The TAA translation stop codon was followed by an inverted repeat forming a potential termination signal. In addition, a 192-codon ORF of unknown significance, theoretically encoding a 21.6-kDa protein, preceded the 5' end of the PA gene.  相似文献   

13.
The ptr gene of Escherichia coli encodes protease III (Mr 110,000) and a 50-kDa polypeptide, both of which are found in the periplasmic space. The gene is physically located between the recC and recB loci on the E. coli chromosome. The nucleotide sequence of a 1167-bp EcoRV-ClaI fragment of chromosomal DNA containing the promoter region and 885 bp of the ptr coding sequence has been determined. S1 nuclease mapping analysis showed that the major 5' end of the ptr mRNA was localized 127 bp upstream from the ATG start codon. The open reading frame (ORF), preceded by a Shine-Dalgarno sequence, extends to the end of the sequenced DNA. Downstream from the -35 and -10 regions is a sequence that strongly fits the consensus sequence of known nitrogen-regulated promoters. A signal peptide of 23 amino acids residues is present at the N terminus of the derived amino acid sequence. The cleavage site as well as the ORF were confirmed by sequencing the N terminus of mature protease III.  相似文献   

14.
Burkholderia cepacia AC1100 utilizes 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) as a sole source of carbon and energy. PT88 is a chromosomal deletion mutant of B. cepacia AC1100 and is unable to grow on 2,4,5-T. The nucleotide sequence of a 5.5-kb chromosomal fragment from B. cepacia AC1100 which complemented PT88 for growth on 2,4,5-T was determined. The sequence revealed the presence of six open reading frames, designated ORF1 to ORF6. Five polypeptides were produced when this DNA region was under control of the T7 promoter in Escherichia coli; however, no polypeptide was produced from the fourth open reading frame, ORF4. Homology searches of protein sequence databases were performed to determine if the proteins involved in 2,4,5-T metabolism were similar to other biodegradative enzymes. In addition, complementation studies were used to determine which genes were essential for the metabolism of 2,4,5-T. The first gene of the cluster, ORF1, encoded a 37-kDa polypeptide which was essential for complementation of PT88 and showed significant homology to putative trans-chlorodienelactone isomerases. The next gene, ORF2, was necessary for complementation and encoded a 47-kDa protein which showed homology to glutathione reductases. ORF3 was not essential for complementation; however, both the 23-kDa protein encoded by ORF3 and the predicted amino acid sequence of ORF4 showed homology to glutathione S-transferases. ORF5, which encoded an 11-kDa polypeptide, was essential for growth on 2,4,5-T, but the amino acid sequence did not show homology to those of any known proteins. The last gene of the cluster, ORF6, was necessary for complementation of PT88, and the 32-kDa protein encoded by this gene showed homology to catechol and chlorocatechol-1,2-dioxygenases.  相似文献   

15.
16.
17.
18.
19.
Lactobacillus helveticus 481 produces a 37-kDa bacteriocin called helveticin J. Libraries of chromosomal DNA from L. helveticus were prepared in lambda gt11 and probed for phage-producing fusion proteins that could react with polyclonal helveticin J antibody. Two recombinant phage, HJ1 and HJ4, containing homologous inserts of 350 and 600 bp, respectively, produced proteins that reacted with antibody. These two phage clones specifically hybridized to L. helveticus 481 total genomic DNA but not to DNA from strains that did not produce helveticin J or strains producing unrelated bacteriocins. HJ1 and HJ4 lysogens produced beta-galactosidase fusion proteins that shared similar epitopes with each other and helveticin J. The intact helveticin J gene (hlv) was isolated by screening a library of L. helveticus chromosomal DNA in lambda EMBL3 with the insert DNA from phage HJ4 as a probe. The DNA sequence of a contiguous 3,364-bp region was determined. Two complete open reading frames (ORF), designated ORF2 and ORF3, were identified within the sequenced fragment. The 3' end of another open reading frame, ORF1, was located upstream of ORF2. A noncoding region and a putative promoter were located between ORF1 and ORF2. ORF2 could encode an 11,808-Da protein. The L. helveticus DNA inserts of the HJ1 and HJ4 clones reside within ORF3, which begins 30 bp downstream from the termination codon of ORF2. ORF3 could encode a 37,511-Da protein. Downstream from ORF3, the 5' end of another ORF (ORF4) was found. A Bg/II fragment containing ORF2 and ORF3 was cloned into pGK12, and the recombinant plasmid, pTRK135, was transformed into Lactobacillus acidophilus via electroporation. Transformants carrying pTRK135 produced a bacteriocin that was heat labile and exhibited an acitivity spectrum that was the same as that of helveticin J.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号