首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Root architecture is developmentally plastic and affected by many intrinsic factors (e.g. plant hormones) and extrinsic factors (e.g. touch, gravity) in order to maximize nutrient and water acquisition. We have recently shown that asymmetrical exposure of cytokinin (CK) at the root tip causes root growth directional changes that is dependent on ethylene signaling and is potentiated by glucose signaling. Auxin homeostasis as maintained by auxin signaling and transport is also involved in CK-induced root cell elongation and differential growth. The signaling pathways eventually converge at actin filament organization since actin filament organization inhibitor latrunculin B (Lat B) can also induce similar growth. We, show that CK can actually alter actin filament organization as seen in actin binding protein 35S::GFP-ABD2-GFP transgenic lines as is also altered by auxin polar transport inhibitor 1-N-naphthylphthalamic acid (NPA) and Lat B in different manners.  相似文献   

2.
Cytokinin (CK) influences many aspects of plant growth and development, and its function often involves intricate interactions with other phytohormones such as auxin and ethylene. However, the molecular mechanisms underlying the role of CK and its interactions with other growth regulators are still poorly understood. Here we describe the isolation and characterization of the Arabidopsis CK-induced root curling 1 (ckrc1) mutant. CKRC1 encodes a previously identified tryptophan aminotransferase (TAA1) involved in the indole-3-pyruvic acid (IPA) pathway of indole-3-acetic acid (IAA) biosynthesis. The ckrc1 mutant exhibits a defective root gravitropic response (GR) and an increased resistance to CK in primary root growth. These defects can be rescued by exogenous auxin or IPA. Furthermore, we show that CK up-regulates CKRC1/TAA1 expression but inhibits polar auxin transport in roots in an AHK3/ARR1/12-dependent and ethylene-independent manner. Our results suggest that CK regulates root growth and development not only by down-regulating polar auxin transport, but also by stimulating local auxin biosynthesis.  相似文献   

3.
In Arabidopsis (Arabidopsis thaliana), ethylene is perceived by a receptor family consisting of five members. Subfamily 1 members ETHYLENE RESPONSE1 (ETR1) and ETHYLENE RESPONSE SENSOR1 (ERS1) have histidine kinase activity, unlike the subfamily 2 members ETR2, ERS2, and ETHYLENE INSENSITIVE4 (EIN4), which lack amino acid residues critical for this enzymatic activity. To resolve the role of histidine kinase activity in signaling by the receptors, we transformed an etr1-9;ers1-3 double mutant with wild-type and kinase-inactive versions of the receptor ETR1. Both wild-type and kinase-inactive ETR1 rescue the constitutive ethylene-response phenotype of etr1-9;ers1-3, restoring normal growth to the mutant in air. However, the lines carrying kinase-inactive ETR1 exhibit reduced sensitivity to ethylene based on several growth response assays. Microarray and real-time polymerase chain reaction analyses of gene expression support a role for histidine kinase activity in eliciting the ethylene response. In addition, protein levels of the Raf-like kinase CONSTITUTIVE TRIPLE RESPONSE1 (CTR1), which physically associates with the ethylene receptor ETR1, are less responsive to ethylene in lines containing kinase-inactive ETR1. These data indicate that the histidine kinase activity of ETR1 is not required for but plays a modulating role in the regulation of ethylene responses. Models for how enzymatic and nonenzymatic regulation may facilitate signaling from the ethylene receptors are discussed.  相似文献   

4.
5.
6.
The ethylene signaling pathway: new insights   总被引:18,自引:0,他引:18  
  相似文献   

7.
8.
9.
10.
Cell expansion in plants requires cell wall biosynthesis and rearrangement. During periods of rapid elongation, such as during the growth of etiolated hypocotyls and primary root tips, cells respond dramatically to perturbation of either of these processes. There is growing evidence that this response is initiated by a cell wall integrity-sensing mechanism and dedicated signaling pathway rather than being an inevitable consequence of lost structural integrity. However, the existence of such a pathway in root tissue and its function in a broader developmental context have remained largely unknown. Here, we show that various types of cell wall stress rapidly reduce primary root elongation in Arabidopsis (Arabidopsis thaliana). This response depended on the biosynthesis of 1-aminocyclopropane-1-carboxylic acid (ACC). In agreement with the established ethylene signaling pathway in roots, auxin signaling and superoxide production are required downstream of ACC to reduce elongation. However, this cell wall stress response unexpectedly does not depend on the perception of ethylene. We show that the short-term effect of ACC on roots is partially independent of its conversion to ethylene or ethylene signaling and that this ACC-dependent pathway is also responsible for the rapid reduction of root elongation in response to pathogen-associated molecular patterns. This acute response to internal and external stress thus represents a novel, noncanonical signaling function of ACC.  相似文献   

11.
12.
The hormone auxin is known to inhibit root elongation and to promote initiation of lateral roots. Here we report complex effects of auxin on lateral root initiation in roots showing reduced cell elongation after auxin treatment. In Arabidopsis thaliana, the promotion of lateral root initiation by indole-3-acetic acid (IAA) was reduced as the IAA concentration was increased in the nanomolar range, and IAA became inhibitory at 25 nM. Detection of this unexpected inhibitory effect required evaluation of root portions that had newly formed during treatment, separately from root portions that existed prior to treatment. Lateral root initiation was also reduced in the iaaM-OX Arabidopsis line, which has an endogenously increased IAA level. The ethylene signaling mutants ein2-5 and etr1-3, the auxin transport mutants aux1-7 and eir1/pin2, and the auxin perception/response mutant tir1-1 were resistant to the inhibitory effect of IAA on lateral root initiation, consistent with a requirement for intact ethylene signaling, auxin transport and auxin perception/response for this effect. The pericycle cell length was less dramatically reduced than cortical cell length, suggesting that a reduction in the pericycle cell number relative to the cortex could occur with the increase of the IAA level. Expression of the DR5:GUS auxin reporter was also less effectively induced, and the AXR3 auxin repressor protein was less effectively eliminated in such root portions, suggesting that decreased auxin responsiveness may accompany the inhibition. Our study highlights a connection between auxin-regulated inhibition of parent root elongation and a decrease in lateral root initiation. This may be required to regulate the spacing of lateral roots and optimize root architecture to environmental demands.  相似文献   

13.
14.
15.
Despite the involvement of cytokinins in phosphate (Pi) signaling being highlighted, the physiological processes involved remain unclear. In this study, we have evaluated the effect of cytokinins on different physiological responses using wild type (wt) and two Arabidopsis mutants with altered shoot Pi content (pho1 and pho2). Physiological studies were related with those previously described as cytokinin-regulated: including hypocotyl elongation, root growth, anthocyanin accumulation, senescence and relative gene expression. Generally, pho1 mutants showed decreased sensitivity to cytokinin, whereas pho2 mutants showed increased sensitivity to the hormone. This observation applies to inhibition of hypocotyls and root growth and anthocyanin accumulation. However, this effect was not shown during senescence or in the expression of ARR6 (Arabidopsis response regulator, ARR). Interestingly, Pi content in shoot of pho1 mutants increased to wt levels after treatment with cytokinins. These results suggest that the interaction between phosphate signaling and cytokinin signaling may be bidirectional while the differential behavior in response to cytokinin is discussed further.  相似文献   

16.
17.
Lateral root branching is a genetically defined and environmentally regulated process. Auxin is required for lateral root formation, and mutants that are altered in auxin synthesis, transport or signaling often have lateral root defects. Crosstalk between auxin and ethylene in root elongation has been demonstrated, but interactions between these hormones in the regulation of Arabidopsis lateral root formation are not well characterized. This study utilized Arabidopsis mutants altered in ethylene signaling and synthesis to explore the role of ethylene in lateral root formation. We find that enhanced ethylene synthesis or signaling, through the eto1-1 and ctr1-1 mutations, or through the application of 1-aminocyclopropane-1-carboxylic acid (ACC), negatively impacts lateral root formation, and is reversible by treatment with the ethylene antagonist, silver nitrate. In contrast, mutations that block ethylene responses, etr1-3 and ein2-5 , enhance root formation and render it insensitive to the effect of ACC, even though these mutants have reduced root elongation at high ACC doses. ACC treatments or the eto1-1 mutation significantly enhance radiolabeled indole-3-acetic acid (IAA) transport in both the acropetal and the basipetal directions. ein2-5 and etr1-3 have less acropetal IAA transport, and transport is no longer regulated by ACC. DR5-GUS reporter expression is also altered by ACC treatment, which is consistent with transport differences. The aux1-7 mutant, which has a defect in an IAA influx protein, is insensitive to the ethylene inhibition of root formation. aux1-7 also has ACC-insensitive acropetal and basipetal IAA transport, as well as altered DR5-GUS expression, which is consistent with ethylene altering AUX1-mediated IAA uptake, and thereby blocking lateral root formation.  相似文献   

18.
Light and temperature are potent environmental signals used to synchronize the circadian oscillator with external time and photoperiod. Phytochrome and cryptochrome photoreceptors integrate light quantity and quality to modulate the pace and phase of the clock. PHYTOCHROME B (phyB) controls period length in red light as well as the phase of the clock in white light. phyB interacts with ARABIDOPSIS RESPONSE REGULATOR4 (ARR4) in a light-dependent manner. Accordingly, we tested ARR4 and other members of the type-A ARR family for roles in clock function and show that ARR4 and its closest relative, ARR3, act redundantly in the Arabidopsis thaliana circadian system. Loss of ARR3 and ARR4 lengthens the period of the clock even in the absence of light, demonstrating that they do so independently of active phyB. In addition, in white light, arr3,4 mutants show a leading phase similar to phyB mutants, suggesting that circadian light input is modulated by the interaction of phyB with ARR4. Although type-A ARRs are involved in cytokinin signaling, the circadian defects appear to be independent of cytokinin, as exogenous cytokinin affects the phase but not the period of the clock. Therefore, ARR3 and ARR4 are critical for proper circadian period and define an additional level of regulation of the circadian clock in Arabidopsis.  相似文献   

19.
Seedling apical hook development involves a complex interplay of hormones and light in the regulation of differential cell growth. However, the underlying molecular mechanisms that integrate these diverse signals to control bending of the embryonic stem are poorly understood. The Arabidopsis ethylene-regulated HOOKLESS1 (HLS1) gene is essential for apical hook formation. Herein, we identify two auxin response regulators that act downstream of HLS1 to control cell elongation in the hypocotyl. Extragenic suppressors of hls1 were identified as mutations in AUXIN RESPONSE FACTOR 2 (ARF2). The level of ARF2 protein was decreased by ethylene, and this response required HLS1. Exposure to light decreased HLS1 protein levels and evoked a concomitant increase in ARF2 accumulation. These studies demonstrate that both ethylene and light signals affect differential cell growth by acting through HLS1 to modulate the auxin response factors, pinpointing HLS1 as a key integrator of the signaling pathways that control hypocotyl bending.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号