首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipoteichoic acid (LTA) is a major outer cell wall component of Gram-positive bacteria that has been implicated as an important factor in the inflammatory response following bacterial infection. In vitro data indicate roles for TLR2, platelet-activating factor receptor (PAFR), CD14, and LPS-binding protein (LBP) in cellular responsiveness to LTA, whereas the mechanisms contributing to LTA effects in vivo have never been investigated. Using mice deficient for LBP, CD14, TLR2, TLR4, or PAFR, we now examined the role of these molecules in pulmonary inflammation induced by highly purified LTA in vivo. Although pulmonary LBP increased dose-dependently following administration of LTA, the inflammatory response was unaltered in LBP-/- mice. TLR2 proved to be indispensable for the initiation of an inflammatory response, as polymorphonuclear cell influx, TNF-alpha, keratinocyte-derived chemokine, and MIP-2 release were abolished in TLR2-/- mice. Minor effects such as moderately decreased TNF-alpha and MIP-2 levels were observed in the absence of CD14, indicating a role for CD14 as a coreceptor. Quite surprisingly, the absence of TLR4 greatly diminished pulmonary inflammation and the same phenotype was observed in PAFR-/- animals. In contrast to all other mice studied, only TLR4-/- and PAFR-/- mice displayed significantly elevated IL-10 pulmonary concentrations. These data suggest that TLR2 is the single most important receptor signaling the presence of LTA within the lungs in vivo, whereas TLR4 and PAFR may influence lung inflammation induced by LTA either by sensing LTA directly or through recognition and signaling of endogenous mediators induced by the interaction between LTA and TLR2.  相似文献   

2.
3.
4.
Gram-positive bacteria entering the dentinal tissue during the carious process are suspected to influence the immune response in human dental pulp. Odontoblasts situated at the pulp/dentin interface are the first cells encountered by these bacteria and therefore could play a crucial role in this response. In the present study, we found that in vitro-differentiated odontoblasts constitutively expressed the pattern recognition receptor TLR1-6 and 9 genes but not TLR7, 8, and 10. Furthermore, lipoteichoic acid (LTA), a wall component of Gram-positive bacteria, triggered the activation of the odontoblasts. LTA up-regulated the expression of its own receptor TLR2, as well as the production of several chemokines. In particular, an increased amount of CCL2 and CXCL10 was detected in supernatants from LTA-stimulated odontoblasts, and those supernatants augmented the migration of immature dendritic cells in vitro compared with controls. Clinical relevance of these observations came from immunohistochemical analysis showing that CCL2 was expressed in vivo by odontoblasts and blood vessels present under active carious lesions but not in healthy dental pulps. In contrast with this inflammatory response, gene expression of major dentin matrix components (type I collagen, dentin sialophosphoprotein) and TGF-beta1 was sharply down-regulated in odontoblasts by LTA. Taken together, these data suggest that odontoblasts activated through TLR2 by Gram-positive bacteria LTA are able to initiate an innate immune response by secreting chemokines that recruit immature dendritic cells while down-regulating their specialized functions of dentin matrix synthesis and mineralization.  相似文献   

5.
Group B Streptococcus (GBS) cell walls potently activate phagocytes by a largely TLR2-independent mechanism. In contrast, the cell wall component lipoteichoic acid (LTA) from diverse Gram-positive bacterial species has been shown to engage TLR2. In this study we examined the role of LTA from GBS in phagocyte activation and the requirements for TLR-LTA interaction. Using cells from knockout mice and genetic complementation in epithelial cells we found that highly pure LTA from both GBS and Staphylococcus aureus interact with TLR2 and TLR6, but not TLR1, in contrast to previous reports. Furthermore, NF-kappaB activation by LTA required the integrity of two putative PI3K binding domains within TLR2 and was inhibited by wortmannin, indicating an essential role for PI3K in cellular activation by LTA. However, LTA from GBS proved to be a relatively weak stimulus of phagocytes containing approximately 20% of the activity observed with LTA from Staphylococcus aureus. Structural analysis by nuclear magnetic resonance spectrometry revealed important differences between LTA from GBS and S. aureus, specifically differences in glycosyl linkage, in the glycolipid anchor and a lack of N-acetylglucosamine substituents of the glycerophosphate backbone. Furthermore, GBS expressing LTA devoid of d-alanine residues, that are essential within immune activation by LTA, exhibited similar inflammatory potency as GBS with alanylated LTA. In conclusion, LTA from GBS is a TLR2/TLR6 ligand that might contribute to secreted GBS activity, but does not contribute significantly to GBS cell wall mediated macrophage activation.  相似文献   

6.
Lipoteichoic acid (LTA) of Gram-positive bacteria initiates innate immune responses via Toll-like receptor-2 (TLR2), resulting in the activation of intracellular signaling and production of inflammatory cytokines in macrophages. Although Bruton's tyrosine kinase (Btk) is biologically important molecule implicated in immune regulation and recently in TLR signaling its importance for LTA-TLR2 mediated responses has not been evaluated. In this study, we detected Btk in the LTA signaling complex with TLR2 and PI 3-kinase (PI3K). The constitutive interaction of these proteins was mediated via PI3K Src homology (SH3) -domain. Both Btk and PI3K were activated by LTA stimulation and the LTA induced cytokine expression was differentially modulated by these kinases. LTA induced the activation of nuclear factor kappaB (NFkappaB), however, only Btk inhibition affected the LTA induced Ser536 phosphorylation and DNA-binding of NFkappaB. In conclusion, our results demonstrate that Btk and PI3K occupy important roles in TLR2-induced activation of macrophages, resulting in selective regulation of cytokines.  相似文献   

7.
Tunneled central venous catheters (TCVCs) are used for dialysis access in 82% of new hemodialysis patients and are rapidly colonized with Gram-positive organism (e.g. Staphylococcus aureus) biofilm, a source of recurrent infections and chronic inflammation. Lipoteichoic acid (LTA), a cell wall ribitol polymer from Gram-positive organisms, mediates inflammation through the Toll-like receptor 2 (TLR2). The effect of LTA on lung endothelial permeability is not known. We tested the hypothesis that LTA from Staphylococcus aureus induces alterations in the permeability of pulmonary microvessel endothelial monolayers (PMEM) that result from activation of TLR2 and are mediated by reactive oxygen/nitrogen species (RONS). The permeability of PMEM was assessed by the clearance rate of Evans blue-labeled albumin, the activation of the TLR2 pathway was assessed by Western blot, and the generation of RONS was measured by the fluorescence of oxidized dihydroethidium and a dichlorofluorescein derivative. Treatment with LTA or the TLR2 agonist Pam(3)CSK(4) induced significant increases in albumin permeability, IκBα phosphorylation, IRAK1 degradation, RONS generation, and endothelial nitric oxide synthase (eNOS) activation (as measured by the p-eNOSser1177:p-eNOSthr495 ratio). The effects on permeability and RONS were effectively prevented by co-administration of the superoxide scavenger Tiron, the peroxynitrite scavenger Urate, or the eNOS inhibitor L-NAME and these effects as well as eNOS activation were reduced or prevented by pretreatment with an IRAK1/4 inhibitor. The results indicate that the activation of TLR2 and the generation of ROS/RNS mediates LTA-induced barrier dysfunction in PMEM.  相似文献   

8.
Lipoteichoic acid (LTA) is a Gram-positive cell surface molecule that is found in both a cell-bound form and cell-free form in the host during an infection. Hemoglobin (Hb) can synergize with LTA, a TLR2 ligand, to potently activate macrophage innate immune responses in a TLR2- and TLR4-dependent way. At low levels of LTA, the presence of Hb can result in a 200-fold increase in the secretion of IL-6 following macrophage activation. Six hours after activation, the macrophage genes that are most highly up-regulated by LTA plus Hb activation compared to LTA alone are cytokines, chemokines, receptors and interferon-regulated genes. Several of these genes exhibit a unique TLR4-dependent increase in mRNA levels that continued to rise more than eight hours after stimulation. This prolonged increase in mRNA levels could be the result of an extended period of NF-κB nuclear localization and the concurrent absence of the NF-κB inhibitor, IκBα, after stimulation with LTA plus Hb. Dynasore inhibition experiments indicate that an endocytosis-dependent pathway is required for the TLR4-dependent up-regulation of IL-6 secretion following activation with LTA plus Hb. In addition, interferon-β mRNA is present after activation with LTA plus Hb, suggesting that the TRIF/TRAM-dependent pathway may be involved. Hb alone can elicit the TLR4-dependent secretion of TNF-α from macrophages, so it may be the TLR4 ligand. Hb also led to secretion of high mobility group box 1 protein (HMGB1), which synergized with LTA to increase secretion of IL-6. The activation of both the TLR2 and TLR4 pathways by LTA plus Hb leads to an enhanced innate immune response.  相似文献   

9.
Abstract The Gram-positive bacterium Lactococcus lactis G121 is a farm isolate that protects mice from ovalbumin-induced asthma. To understand the molecular mechanisms of such allergy-protective properties, the isolation and characterization of cell envelope constituents is crucial. Here, structural analyses of the extracellular teichoic acid (EC TA) from L. lactis G121 are presented. Extraction with 0.9% saline afforded a crude TA fraction. Consecutive size exclusion chromatography on Biogel P60 and P10 matrix was performed to purify the sample. Chemical component analyses, high-resolution electrospray ionization Fourier-transformed ion cyclotron mass spectrometry, and nuclear magnetic resonance spectroscopy were conducted for structural elucidation. The EC TA was a poly(glycosylglycerol phosphate) molecule with a repeating unit of -6)-[β-d-Glcp-(1→3)-][α-d-GlcpNAc-(1→4)-]α-d-GalpNAc-(1→3)-β-d-GlcpNAc-(1→2)-glycerol-(1-P-).  相似文献   

10.
11.
12.
Group B streptococcus (GBS) is the most important cause of neonatal sepsis, which is mediated in part by TLR2. However, GBS components that potently induce cytokines via TLR2 are largely unknown. We found that GBS strains of the same serotype differ in released factors that activate TLR2. Several lines of genetic and biochemical evidence indicated that lipoteichoic acid (LTA), the most widely studied TLR2 agonist in Gram-positive bacteria, was not essential for TLR2 activation. We thus examined the role of GBS lipoproteins in this process by inactivating two genes essential for bacterial lipoprotein (BLP) maturation: the prolipoprotein diacylglyceryl transferase gene (lgt) and the lipoprotein signal peptidase gene (lsp). We found that Lgt modification of the N-terminal sequence called lipobox was not critical for Lsp cleavage of BLPs. In the absence of lgt and lsp, lipoprotein signal peptides were processed by the type I signal peptidase. Importantly, both the Deltalgt and the Deltalsp mutant were impaired in TLR2 activation. In contrast to released factors, fixed Deltalgt and Deltalsp GBS cells exhibited normal inflammatory activity indicating that extracellular toxins and cell wall components activate phagocytes through independent pathways. In addition, the Deltalgt mutant exhibited increased lethality in a model of neonatal GBS sepsis. Notably, LTA comprised little, if any, inflammatory potency when extracted from Deltalgt GBS. In conclusion, mature BLPs, and not LTA, are the major TLR2 activating factors from GBS and significantly contribute to GBS sepsis.  相似文献   

13.
14.
Exposure of macrophages to LPS induces a state of hyporesponsiveness to subsequent stimulation with LPS termed LPS desensitization or tolerance. To date, it is not known whether similar mechanisms of macrophage refractoriness are induced on contact with components of Gram-positive bacteria. In the present study, we demonstrate that pretreatment with highly purified lipoteichoic acid (LTA) results in suppression of cytokine release on restimulation with LTA in vitro and in vivo in both C3H/HeN and C3H/HeJ mice, but not in macrophages from Toll-like receptor (TLR)-2-deficient mice. Furthermore, desensitization in response to LPS or LTA exposure also inhibits responses to the other stimulus ("cross-tolerance"), suggesting that signaling pathways shared by TLR2 and TLR4 are impaired during tolerance. Finally, we show that LPS- or LTA-induced cross-tolerance is not transferred to hyporesponsive cells cocultured with LPS/LTA-responsive macrophages, showing that soluble mediators do not suffice for tolerance induction in neighboring cells.  相似文献   

15.
Lipoteichoic acid (LTA) derived from Staphylococcus aureus is reported to be a ligand of TLR2. However, we previously demonstrated that LTA fraction prepared from bacterial cells contains lipoproteins, which activate cells via TLR2. In this study, we investigated the immunobiological activity of LTA fraction obtained from S. aureus wild-type strain, lipoprotein diacylglycerol transferase deletion (delta lgt) mutant, which lacks palmitate-labeled lipoproteins, and its complemented strain and evaluated the activity of LTA molecule. LTA fraction was prepared by butanol extraction of the bacteria followed by hydrophobic interaction chromatography. Although all LTA fractions activated cells through TLR2, the LTA from delta lgt mutant was 100-fold less potent than those of wild-type and complemented strains. However, no significant structural difference in LTA was observed in NMR spectra. Further, alanylation of LTA molecule showed no effect in immunobiological activity. These results showed that not LTA molecule but lipoproteins are dominant immunobiologically active TLR2 ligand in S. aureus.  相似文献   

16.
Toll-like receptors (TLRs) mediate recognition of microbial components. Despite activation of a shared set of signal transduction molecules, the biological effects of certain TLR agonists differ considerably. In macrophages and dendritic cells, stimulation by the prototypical stimuli CpG-DNA (TLR9), lipopolysaccharide (LPS; TLR4) and lipoteichoic acid (LTA; TLR2) resulted in striking differences in expression of IL-12. However, these stimuli induced similar amounts of the common proinflammatory cytokine TNFα. Surprisingly, an IL-12p40 promoter reporter construct was activated equally by CpG-DNA, LPS and LTA. Examinations of the chromatin structure of the endogenous IL-12p40 promoter revealed that nucleosome remodelling contributed to differential IL-12 induction. Upon stimulation, nucleosome architecture was changed to provide increased access to the IL-12p40 promoter. In dendritic cells, a differential induction of nucleosome remodelling at the IL-12p40 promoter was observed upon triggering with different TLR agonists. These results identify nucleosome remodelling as an additional restriction point in differential TLR signalling.  相似文献   

17.
The various functions of gelsolin in extracellular compartments are not yet clearly defined but include actin scavenging and antiinflammatory effects. Gelsolin was recently reported to bind endotoxin (LPS) from various Gram-negative bacteria with high affinity. In this study we investigate whether gelsolin also interacts with bacterial wall molecules of Gram-positive bacteria such as lipoteichoic acid (LTA) and whether gelsolin's interaction with bacterial lipids from Gram-negative or Gram-positive bacteria affects their cellular inflammatory responses. A peptide based on the PPI binding site of gelsolin (160-169) binds purified LTA at the same molecular ratio that it binds phosphatidylinositol 4,5-bisphosphate. The OD of recombinant human plasma gelsolin was found to decrease following the addition of purified LTA, and the binding of gelsolin to LTA inhibits F-actin depolymerization by gelsolin. Simultaneously, the ability of LTA to activate translocation of NF-kappaB, E-selectin expression, and adhesion of neutrophils to LTA-treated human aortic endothelial cells was compromised by gelsolin. Gelsolin was able to partially inhibit LPS- or LTA-induced release of IL-8 from human neutrophils but was unable to prevent Gram-positive Bacillus subtilis or Gram-negative Pseudomonas aeruginosa growth and had no effect on the antibacterial activity of the cathelicidin-derived antibacterial peptide LL37. These data suggest that extracellular gelsolin is involved in the host immune recognition of LTA or LPS following release of these molecules from the bacterial outer membrane during cell division or attack by drugs and immune components.  相似文献   

18.
Heme oxygenase (HO)-1 is a stress-inducible rate-limiting enzyme in heme degradation that confers cytoprotection against oxidative injury and provides a vital function in maintaining tissue homeostasis. Increasing reports have indicated that lipoteichoic acid (LTA) exerts as LPS as an immune system-stimulating agent and plays a role in the pathogenesis of severe inflammatory responses induced by Gram-positive bacterial infection. We report that LTA is an inducer of HO-1 expression mediated through the signaling pathways in human tracheal smooth muscle cells (HTSMCs). LTA-induced HO-1 protein levels, mRNA expression, and promoter activity were attenuated by transfection with dominant negative mutants of TLR2 and MyD88, by pretreatment with the inhibitors of c-Src (PP1), NADPH oxidase (diphenylene iodonium chloride (DPI) and apocynin (APO)), and reactive oxygen species (ROS) scavenger (N-acetyl-l-cysteine) or by transfection with small interfering RNAs of Src and NF-E2-related factor 2 (Nrf2). LTA-stimulated translocation of p47(phox) and Nrf2 or ROS production was attenuated by transfection with dominant negative mutants of TLR2, MyD88, and c-Src and by pretreatment with DPI or APO. Furthermore, LTA-induced TLR2, MyD88, TNFR-associated factor (TRAF)6, c-Src, and p47(phox) complex formation was revealed by immunoprecipitation using an anti-TLR2 or anti-c-Src Ab followed by Western blot analysis against an anti-TLR2, anti-MyD88, anti-TRAF6, anti-c-Src, or anti-p47(phox) Ab. These results demonstrated that LTA-induced ROS generation was mediated through the TLR2/MyD88/TRAF6/c-Src/NADPH oxidase pathway, in turn initiates the activation of Nrf2, and ultimately induces HO-1 expression in HTSMCs.  相似文献   

19.
The systemic inflammatory response syndrome (SIRS) is associated with activation of innate immunity. We studied the association between mortality and measures of disease severity in the intensive care unit (ICU) and functional polymorphisms in genes coding for Toll-like receptor 4 (TLR4), macrophage migratory inhibitory factor (MIF), tumour necrosis factor (TNF) and lymphotoxin-alpha (LTA). Two hundred thirty-three patients with severe SIRS were recruited from one general adult ICU in a tertiary centre in the UK. DNA from patients underwent genotyping by 5′ nuclease assay. Genotype was compared to phenotype. Primary outcome was mortality in ICU. Minor allele frequencies were TLR4 +896G 7%, MIF 173C 16%, TNF ?238A 10% and LTA +252G 34%. The frequency of the hypoimmune minor allele TNF ?238A was significantly higher in patients who died in ICU compared to those who survived (p?=?0.0063) as was the frequency of the two haplotypes LTA +252G, TNF ?1031T, TNF ?308G, TNF ?238A and LTA +252G, TNF?1031T, TNF?308A and TNF?238A (p?=?0.0120 and 0.0098, respectively). These findings re-enforce the view that a balanced inflammatory/anti-inflammatory response is the most important determinant of outcome in sepsis. Genotypes that either favour inflammation or its counter-regulatory anti-inflammatory response are likely to influence mortality and morbidity.  相似文献   

20.
Toll-like receptors (TLRs) have been found to be key elements in pathogen recognition by the host immune system. Dendritic cells (DCs) are crucial for both innate immune responses and initiation of acquired immunity. Here we focus on the potential involvement of TLR ligand interaction in DC maturation. TLR2 knockout mice and mice carrying a TLR4 mutation (C3H/HeJ) were investigated for DC maturation induced by peptidoglycan (PGN), lipopolysaccharide (LPS), or lipoteichoic acids (LTAs). All stimuli induced maturation of murine bone marrow-derived DCs in control mice. TLR2(-)/- mice lacked maturation upon stimulation with PGN, as assessed by expression of major histocompatibility complex class II, CD86, cytokine, and chemokine production, fluorescein isothiocyanate-dextran uptake, and mixed lymphocyte reactions, while being completely responsive to LPS. A similar lack of maturation was observed in C3H/HeJ mice upon stimulation with LPS. DC maturation induced by LTAs from two different types of bacteria was severely impaired in TLR2(-)/-, whereas C3H/HeJ mice responded to LTAs in a manner similar to wild-type mice. We demonstrate that DC maturation is induced by stimuli from Gram-positive microorganisms, such as PGN and LTA, with similar efficiency as by LPS. Finally, we provide evidence that TLR2 and TLR4 interaction with the appropriate ligand is essential for bacteria-induced maturation of DCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号