首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: BACKGROUND: Francisella tularensis is an intracellular pathogen that causes tularemia in humans and the public health importance of this bacterium has been well documented in recent history. Francisella philomiragia, a distant relative of F. tularensis, is thought to constitute an environmental lineage along with Francisella novicida. Nevertheless, both F. philomiragia and F. novicida have been associated with human disease, primarily in immune-compromised individuals. To understand the genetic relationships and evolutionary contexts among different lineages within the genus Francisella, the genome of Francisella spp. strain TX07-7308 was sequenced and compared to the genomes of F. philomiragia strains ATCC 25017 and 25015, F. novicida strain U112, and F. tularensis strain Schu S4. RESULTS: The size of strain ATCC 25017 chromosome was 2,045,775 bp and contained 1,983 protein-coding genes. The size of strain TX07-7308 chromosome was 2,035,931 bp and contained 1,980 protein-coding genes. Pairwise BLAST comparisons indicated that strains TX07-7308 and ATCC 25017 contained 1700 protein coding genes in common. NUCmer analyses revealed that the chromosomes of strains TX07-7308 and ATCC 25017 were mostly collinear except for a few gaps, translocations, and/or inversions. Using the genome sequence data and comparative analyses with other members of the genus Francisella (e.g., F. novicida strain U112 and F. tularensis strain Schu S4), several strain-specific genes were identified. Strains TX07-7308 and ATCC 25017 contained an operon with six open reading frames encoding proteins related to enzymes involved in thiamine biosynthesis that was absent in F. novicida strain U112 and F. tularensis strain Schu S4. Strain ATCC 25017 contained an operon putatively involved in lactose metabolism that was absent in strain TX07-7308, F. novicida strain U112, and F. tularensis strain Schu S4. In contrast, strain TX07-7308 contained an operon putatively involved in glucuronate metabolism that was absent in the genomes of strain ATCC 25017, F. novicida strain U112, and F. tularensis strain Schu S4. The polymorphic nature of polysaccharide biosynthesis/modification gene clusters among different Francisella strains was also evident from genome analyses. CONCLUSIONS: From genome comparisons, it appeared that genes encoding novel functions have contributed to the metabolic enrichment of the environmental lineages within the genus Francisella. The inability to acquire new genes coupled with the loss of ancestral traits and the consequent reductive evolution may be a cause for, as well as an effect of, niche selection of F. tularensis. Sequencing and comparison of the genomes of more isolates are required to obtain further insights into the ecology and evolution of different species within the genus Francisella.  相似文献   

2.
Francisella novicida (U112), a close relative of the highly virulent bacterium F. tularensis, is known to produce a lipopolysaccharide that is significantly different in biological properties from the LPS of F. tularensis. Here we present the results of the structural analysis of the F. novicida LPS core part, which is found to be similar to that of F. tularensis, differing only by one additional alpha-Glc residue:where R is an O-chain, linked via a beta-bacillosamine (2,4-diamino-2,4,6-trideoxyglucose) residue. The lipid part of F. novicida LPS contains no phosphate substituent and apparently has a free reducing end, a feature also noted in F. tularensis LPS.  相似文献   

3.
Historically, Francisella strains have been described as nonhemolytic. In this study, we show by use of solid and liquid hemolysis assays that some Francisella strains have hemolytic properties. The Francisella novicida type strain U112 is hemolytic to horse erythrocytes and Francisella philomiragia type strain FSC144 is hemolytic towards both human and horse erythrocytes. The F. novicida strain U112 released a protein (novilysin A) into the culture supernatant which cross-reacted with antiserum against Escherichia coli HlyA whereas there was no similar protein detectable with this cross-reactive property from the supernatant of the F. philomiragia strain.  相似文献   

4.
5.
6.
7.
8.
9.
Francisella tularensis is an obligate, intracellular bacterium that causes acute, lethal disease following inhalation. As an intracellular pathogen F. tularensis must invade cells, replicate, and disseminate while evading host immune responses. The mechanisms by which virulent type A strains of Francisella tularensis accomplish this evasion are not understood. Francisella tularensis has been shown to target multiple cell types in the lung following aerosol infection, including dendritic cells (DC) and macrophages. We demonstrate here that one mechanism used by a virulent type A strain of F. tularensis (Schu4) to evade early detection is by the induction of overwhelming immunosuppression at the site of infection, the lung. Following infection and replication in multiple pulmonary cell types, Schu4 failed to induce the production of proinflammatory cytokines or increase the expression of MHCII or CD86 on the surface of resident DC within the first few days of disease. However, Schu4 did induce early and transient production of TGF-beta, a potent immunosuppressive cytokine. The absence of DC activation following infection could not be attributed to the apoptosis of pulmonary cells, because there were minimal differences in either annexin or cleaved caspase-3 staining in infected mice compared with that in uninfected controls. Rather, we demonstrate that Schu4 actively suppressed in vivo responses to secondary stimuli (LPS), e.g., failure to recruit granulocytes/monocytes and stimulate resident DC. Thus, unlike attenuated strains of F. tularensis, Schu4 induced broad immunosuppression within the first few days after aerosol infection. This difference may explain the increased virulence of type A strains compared with their more attenuated counterparts.  相似文献   

10.
Lipopolysaccharide (LPS) antigenic epitopes of natural virulent and isogenic avirulent Francisella tularensis strains and other species of the Francisella genus (F. novicida, F. novicida-like, and F. philomiragia) were studied by dot and immunoblotting. Polyclonal rabbit and human sera to virulent F. tularensis strains and monoclonal antibodies to F. tularensis LPS O-side chain were used for detecting species- and genus-specific LPS epitopes. Typical virulent F. tularensis strains produce two types of S-LPS with different antigenic specificity simultaneously. Antigenic determinants of two LPS types were located in LPS O-polysaccharide but not in the core oligosaccharide. The epitopes of the first LPS type were characterized by species specificity for F. tularensis in contrast to determinants of the second LPS type, which had epitopes common with F. novicida. Cross exhaustion of human and rabbit antitularemic sera by F. tularensis and F. novicida LPS showed that F. novicida LPS molecules contained at least two epitopes--highly specific for F. novicida and common with the second type of F. tularensis LPS. The immune response of rabbits and humans to F. tularensis LPS epitopes was different in principle. Sera from rabbits immunized with vaccine and virulent F. tularensis strains contained antibodies "recognizing" antigenic epitopes of two S-LPS forms of the bacterium: type 1 species-specific (in high titers) and type 2 epitopes common with F. novicida LPS (in low titers). In addition to these, sera from patients with tularemia contain immunoglobulins to species-specific epitopes of F. novicida LPS in high titers. Experiments on avirulent mutants showed that in some cases attenuation of F. tularensis can involve loss of species-specific LPS form, while S-LPS with epitopes common with F. novicida LPS will be retained. The difference in specificity of human and rabbit antitularemic antibodies is due to individual features in the host immune system.  相似文献   

11.
A cell culture assay to determine the virulence of Francisella tularensis was devised. Murine cell lines P388 and J774 were significantly more susceptible to F. tularensis Schu4 than the attenuated live vaccine strain. The ability of F. tularensis strains to cause cell death correlated with their virulence to mice. Use of this assay with infected cells separated from susceptible uninfected cells by a membrane with 0.1 μm pores, failed to demonstrate possible diffusible exotoxins produced by F. tularensis.  相似文献   

12.
Francisella tularensis and related intracellular pathogens synthesize lipid A molecules that differ from their Escherichia coli counterparts. Although a functional orthologue of lpxK, the gene encoding the lipid A 4'-kinase, is present in Francisella, no 4'-phosphate moiety is attached to Francisella lipid A. We now demonstrate that a membrane-bound phosphatase present in Francisella novicida U112 selectively removes the 4'-phosphate residue from tetra- and pentaacylated lipid A molecules. A clone that expresses the F. novicida 4'-phosphatase was identified by assaying lysates of E. coli colonies, harboring members of an F. novicida genomic DNA library, for 4'-phosphatase activity. Sequencing of a 2.5-kb F. novicida DNA insert from an active clone located the structural gene for the 4'-phosphatase, designated lpxF. It encodes a protein of 222 amino acid residues with six predicted membrane-spanning segments. Rhizobium leguminosarum and Rhizobium etli contain functional lpxF orthologues, consistent with their lipid A structures. When F. novicida LpxF is expressed in an E. coli LpxM mutant, a strain that synthesizes pentaacylated lipid A, over 90% of the lipid A molecules are dephosphorylated at the 4'-position. Expression of LpxF in wild-type E. coli has no effect, because wild-type hexaacylated lipid A is not a substrate. However, newly synthesized lipid A is not dephosphorylated in LpxM mutants by LpxF when the MsbA flippase is inactivated, indicating that LpxF faces the outer surface of the inner membrane. The availability of the lpxF gene will facilitate re-engineering lipid A structures in diverse bacteria.  相似文献   

13.
Wang X  Ribeiro AA  Guan Z  McGrath SC  Cotter RJ  Raetz CR 《Biochemistry》2006,45(48):14427-14440
Francisella tularensis subsp. novicida U112 phospholipids, extracted without hydrolysis, consist mainly of phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, and two lipid A species, designated A1 and A2. These lipid A species, present in a ratio of 7:1, comprise 15% of the total phospholipids, as judged by 32Pi labeling. Although lipopolysaccharide is detectable in F. tularensis subsp. novicida U112, less than 5% of the total lipid A is covalently linked to it. A1 and A2 were analyzed by electrospray ionization and matrix-assisted laser desorption ionization mass spectrometry, gas chromatography/mass spectrometry, and NMR spectroscopy. Both compounds are disaccharides of glucosamine, acylated with primary 3-hydroxystearoyl chains at positions 2, 3, and 2' and a secondary palmitoyl residue at position 2'. Minor isobaric species and some lipid A molecules containing a 3-hydroxypalmitoyl chain in place of 3-hydroxystearate are also present. The 4'- and 3'-positions of A1 and A2 are not derivatized, and 3-deoxy-d-manno-octulosonic acid (Kdo) is not detectable. The 1-phosphate groups of both A1 and A2 are modified with an alpha-linked galactosamine residue, as shown by NMR spectroscopy and gas chromatography/mass spectrometry. An alpha-linked glucose moiety is attached to the 6'-position of A2. The lipid A released by mild acid hydrolysis of F. tularensis subsp. novicida lipopolysaccharide consists solely of component A1. F. tularensis subsp. novicida mutants lacking the arnT gene do not contain a galactosamine residue on their lipid A. Formation of free lipid A in F. tularensis subsp. novicida might be initiated by an unusual Kdo hydrolase present in the membranes of this organism.  相似文献   

14.
Francisella novicida (U112), a close relative of the highly virulent bacterium F. tularensis, was shown to produce a lipopolysaccharide in which the antigenic O-polysaccharide component was found by chemical, 1H and 13C NMR and MS analyses to be an unbranched neutral linear polymer of a repeating tetrasaccharide unit composed of 2-acetamido-2-deoxy-D-galacturonamide (D-GalNAcAN) and 2,4-diacetamido-2,4,6-trideoxy-D-glucose (D-Qui2NAc4NAc, di-N-acetylbacillosamine) residues (3:1) and had the structure: -->4)-alpha-D-GalNAcAN-(1-->4)-alpha-D-GalNAcAN-(1-->4)-alpha-D-GalNAcAN-(1-->3)-alpha-D-QuiNAc4NAc-(1-->. With polyclonal murine antibody, the F. novicida O-antigen did not show serological cross-reactivity with the O-antigen of F. tularensis despite the occurrence of a common -->4)-D-GalpNAcAN-(1-->4)-alpha-D-GalpNAcAN-(1--> disaccharide unit in their respective O-antigens. Thus, O-PS serology offers a practical way to distinguish between the two Francisella species.  相似文献   

15.
Francisella novicida is a gram-negative pathogen that can induce disease in mice that mimics human tularemia, and is nearly identical to Francisella tularensis at the genomic level. In this work a number of antibiotic marker cassettes that incorporate a strong F. novicida promoter is constructed, which greatly enhances selection in F. novicida and F. tularensis. Two low-copy plasmid vectors based on a broad-host-range plasmid, and an integrating vector have also been made, and these can be used for genetic complementation. Two general approaches to deletion mutagenesis in F. novicida is also described.  相似文献   

16.
To further understand the role of LPS in the pathogenesis of Francisella infection, we characterized murine infection with F. novicida, and compared immunobiological activities of F. novicida LPS and the LPS from F. tularensis live vaccine strain (LVS). F. novicida had a lower intradermal LD(50) in BALB/cByJ mice than F. tularensis LVS, and mice given a lethal F. novicida dose intraperitoneally died faster than those given the same lethal F. tularensis LVS dose. However, the pattern of in vivo dissemination was similar, and in vitro growth of both bacteria in bone marrow-derived macrophages was comparable. F. novicida LPS stimulated very modest in vitro proliferation of mouse splenocytes at high doses, but F. tularensis LVS LPS did not. Murine bone marrow macrophages treated in vitro with F. novicida LPS produced IL12 and TNF-alpha, but did not produce detectable interferon-gamma, IL10, or nitric oxide; in contrast, murine macrophages treated with F. tularensis LVS LPS produced none of these mediators. In contrast to clear differences in stimulation of proliferation and especially cytokines, both types of purified LPS stimulated early protection against lethal challenge of mice with F. tularensis LVS, but not against lethal challenge with F. novicida. Thus, although LPS recognition may not be a major factor in engendering protection, the ability of F. novicida LPS to stimulate the production of proinflammatory cytokines including TNF-alpha likely contributes to the increased virulence for mice of F. novicida compared to F. tularensis LVS.  相似文献   

17.
The gamma-proteobacterium Francisella tularensis is one of the most infectious human pathogens, and the highly virulent organism F. tularensis subsp. tularensis (type A) and less virulent organism F. tularensis subsp. holarctica (type B) are most commonly associated with significant disease in humans and animals. Here we report the complete genome sequence and annotation for a low-passage type B strain (OSU18) isolated from a dead beaver found near Red Rock, Okla., in 1978. A comparison of the F. tularensis subsp. holarctica sequence with that of F. tularensis subsp. tularensis strain Schu4 (P. Larsson et al., Nat. Genet. 37:153-159, 2005) highlighted genetic differences that may underlie different pathogenicity phenotypes and the evolutionary relationship between type A and type B strains. Despite extensive DNA sequence identity, the most significant difference between type A and type B isolates is the striking amount of genomic rearrangement that exists between the strains. All but two rearrangements can be attributed to homologous recombination occurring between two prominent insertion elements, ISFtu1 and ISFtu2. Numerous pseudogenes have been found in the genomes and are likely contributors to the difference in virulence between the strains. In contrast, no rearrangements have been observed between the OSU18 genome and the genome of the type B live vaccine strain (LVS), and only 448 polymorphisms have been found within non-transposase-coding sequences whose homologs are intact in OSU18. Nonconservative differences between the two strains likely include the LVS attenuating mutation(s).  相似文献   

18.
We determined that LVS and Schu S4 strains of the human pathogen Francisella tularensis express a siderophore when grown under iron-limiting conditions. We purified this siderophore by conventional column chromatography and high-pressure liquid chromatography and used mass spectrometric analysis to demonstrate that it is structurally similar to the polycarboxylate siderophore rhizoferrin. The siderophore promoted the growth of LVS and Schu S4 strains in iron-limiting media. We identified a potential siderophore biosynthetic gene cluster encoded by fslABCD in the F. tularensis genome. The first gene in the cluster, fslA, encodes a member of the superfamily of nonribosomal peptide synthetase-independent siderophore synthetases (NIS synthetases) characterized by the aerobactin synthetases IucA and IucC. We determined that fslA is transcribed as part of an operon with downstream gene fslB and that the expression of the locus is induced by iron starvation. A targeted in-frame nonpolar deletion of fslA in LVS resulted in the loss of siderophore expression and in a reduced ability of F. tularensis to grow under conditions of iron limitation. Siderophore activity and the ability to grow under iron limitation could be regained by introducing the fslA(+) gene on a complementing plasmid. Our results suggest that the fslA-dependent siderophore is important for survival of F. tularensis in an iron-deficient environment.  相似文献   

19.
Transformation and allelic replacement in Francisella spp.   总被引:1,自引:0,他引:1  
We describe methods for transposon mutagenesis and allelic replacement in the facultative intracellular pathogen Francisella. Recombinant clones were constructed by insertion of partially cut F. tularensis or F. novicida DNA into pUC19 and then mutagenized with a mini-Tn10-Km transposon. F. novicida could be transformed with these plasmids either by a chemical transformation method or by electroporation, whereas F. tularensis could be transformed only by electroporation. Transformation of F. tularensis by electroporation was enhanced in the absence of the capsule. Southern blot analysis showed that the KmR marker was rescued either by integration of the plasmid into the Francisella chromosome or by allelic replacement. Allelic replacement was found to be the mechanism underlying a site-specific mutation affecting FopA, an outer-membrane protein of Francisella. F. novicida could also be transformed with chromosomal DNA carrying the KmR marker and the transformation frequency obtained using chromosomal DNA was generally greater than that obtained using plasmid DNA. F. novicida was also transformed by an IncQ plasmid containing an F. novicida DNA insert, which replicated autonomously in this host.  相似文献   

20.
Francisella tularensis is a gram-negative, facultative intracellular pathogen that causes the highly infectious zoonotic disease tularemia. We have discovered a ca. 30-kb pathogenicity island of F. tularensis (FPI) that includes four large open reading frames (ORFs) of 2.5 to 3.9 kb and 13 ORFs of 1.5 kb or smaller. Previously, two small genes located near the center of the FPI were shown to be needed for intramacrophage growth. In this work we show that two of the large ORFs, located toward the ends of the FPI, are needed for virulence. Although most genes in the FPI encode proteins with amino acid sequences that are highly conserved between high- and low-virulence strains, one of the FPI genes is present in highly virulent type A F. tularensis, absent in moderately virulent type B F. tularensis, and altered in F. tularensis subsp. novicida, which is highly virulent for mice but avirulent for humans. The G+C content of a 17.7-kb stretch of the FPI is 26.6%, which is 6.6% below the average G+C content of the F. tularensis genome. This extremely low G+C content suggests that the DNA was imported from a microbe with a very low G+C-containing chromosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号