首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Summary We have previously reported in vitro complementation assays for chromosome initiation that enable dnaA and dnaC mutant extracts to synthesize DNA. To examine the role of RNA polymerase in chromosome initiation, inhibitors of the enzyme and anti-RNA polymerase antibody were used. Though rifampicin failed to efficiently inhibit ribonucleoside triphosphate polymerization under the assay conditions, both streptolydigin and anti-RNA plymerase antibody abolished ribonucleic acid synthesis completely. Antibody effectively inhibited chromosome initiation in the dnoA mutant based reaction but streptolydigin did not. Neither streptolydigin nor antibody affected the dnaC-dependent assay. It was concluded that RNA polymerase is required for initiation but not necessarily to polymerize a polyribonucleotide. A scheme for the sequence of initiation events is presented.  相似文献   

3.
4.
5.
The nucleotide excision repair pathway contributes to genetic stability by removing a wide range of DNA damage through an error-free reaction. When the lesion is located, the altered strand is incised on both sides of the lesion and a damaged oligonucleotide excised. A repair patch is then synthesized and the repaired strand is ligated. It is assumed that only DNA polymerases delta and/or epsilon participate to the repair DNA synthesis step. Using UV and cisplatin-modified DNA templates, we measured in vitro that extracts from cells overexpressing the error-prone DNA polymerase beta exhibited a five- to sixfold increase of the ultimate DNA synthesis activity compared with control extracts and demonstrated the specific involvement of Pol beta in this step. By using a 28 nt gapped, double-stranded DNA substrate mimicking the product of the incision step, we showed that Pol beta is able to catalyze strand displacement downstream of the gap. We discuss these data within the scope of a hypothesis previously presented proposing that excess error-prone Pol beta in cancer cells could perturb the well-defined specific functions of DNA polymerases during error-free DNA transactions.  相似文献   

6.
7.
8.
9.
10.
Bacterial RNA polymerase and eukaryotic RNA polymerase II exhibit striking structural similarities, including similarities in overall structure, relative positions of subunits, relative positions of functional determinants, and structures and folding topologies of subunits. These structural similarities are paralleled by similarities in mechanisms of interaction with DNA.  相似文献   

11.
12.
We describe a direct procedure for screening genomic recombinant DNA libraries or restriction fragments of cloned DNA regions for RNA polymerase II promoters. Cellular polyadenylated mRNA is chemically de-capped by beta-elimination reaction and enzymatically re-capped with [alpha-32P]GTP by vaccinia guanylyl transferase. Since this enzyme only accepts di- or triphosphorylated 5' termini as a substrate, the mRNAs are labeled exclusively at the first nucleotide, irrespective of whether the mRNA was intact or fragmented before in vitro capping. By using in vitro-capped mRNA as a hybridization probe, recombinant DNA molecules or restriction fragments that carry a cap site (and thus likely an RNA polymerase II promoter) can directly be identified. Here, we demonstrate the applicability of this procedure by the isolation and characterization of several genomic DNA clones containing RNA polymerase II promoter sequences, that are highly active in liver.  相似文献   

13.
DNA sequence for the T7 RNA polymerase promoter for T7 RNA species II   总被引:2,自引:0,他引:2  
The DNA sequence for the T7 late region class III promoter for T7 RNA species II has been determined. I have found that the DNA sequence for this promoter presented in an earlier report (Oakley et al., 1979) is incorrect and that this class III promoter contains a 23 base-pair sequence identical to those present in all other T7 class III promoters (Rosa, 1979). The T7 RNA species II promoter has been located at 68% on the T7 genome.  相似文献   

14.
15.
16.
J A Knezetic  D S Luse 《Cell》1986,45(1):95-104
RNA was synthesized in vitro using HeLa cell nuclear extracts and circular DNA templates onto which varying numbers of nucleosomes had been reconstituted with Xenopus oocyte extracts. We found that fully reconstituted templates supported no specific initiation by RNA polymerase II; however, DNA exposed to the reconstitution extracts under conditions which did not allow nucleosome deposition was transcribed normally. A set of successively less reconstituted templates was also transcribed. No initiation occurred on reconstitutes with more than two-thirds of the physiological nucleosome density; reconstitutes with less than one-third of the physiological nucleosome density were transcribed as efficiently as naked DNA.  相似文献   

17.
18.
The protein product of the bacteriophage T4 gene 32 is a single-stranded DNA binding protein which functions during phage DNA repair, replication and recombination. Recently the gene 32 protein was shown to participate in the regulation of its own expression. Although the purified protein is known to interact with DNA, the autoregulation was shown to occur at the translational level. The previous analysis in vivo, although coherent, was indirect. We report here direct cell-free experiments in which purified gene 32 protein specifically represses translation of gene 32 messenger RNA.  相似文献   

19.
20.
Bavoux C  Hoffmann JS  Cazaux C 《Biochimie》2005,87(7):637-646
A major tolerance mechanism that functions to replicate damaged genomic DNA across lesions that have escaped elimination by repair mechanism is translesion DNA synthesis (TLS). DNA polymerase kappa (Pol kappa), a specialised low-fidelity DNA polymerase which is able to perform DNA synthesis across several damaged bases, is one of the enzymes involved in the process. The mutagenic nature of Pol kappa implies that its expression must be tightly regulated to prevent the formation of excessive genetic disorders along undamaged parts of the genome. Indeed, Pol kappa overexpression, which is notably observed in lung cancer, results not only in increased spontaneous mutagenesis, but also in pleiotropic alterations such as DNA breaks, genetic exchanges and aneuploidy. This review will discuss both aspects of DNA polymerase kappa, which can be considered as a genomic supervisor participating in genome maintenance and when misregulated as a genetic instability enhancer as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号