首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insertion of the reactive center loop in beta-sheet A in serpins has been typically inferred from the increased stability of the cleaved form to thermal- and urea-induced denaturation. We describe a convenient and rapid fluorescence-based method that differentiates the loop-inserted form from the loop-exposed form in ovalbumin, a prototypic noninhibitory serpin. Recombinant wild-type and R345A ovalbumins in the intact form bind ANS with equilibrium dissociation constants of 116 and 125 microM and a maximal fluorescence increase of 200 and 264%, respectively, in pH 6.8 buffer. Cleavage of the two proteins with porcine pancreatic elastase results in a 1.6- and 2.6-fold increase in the ANS-binding affinity. While cleavage of the reactive center loop in rR345A ovalbumin results in a approximately 200% increase in the ANS fluorescence, the rWT protein exhibits a approximately 50% decrease. Similar experiments with alpha(1)-proteinase inhibitor and antithrombin, two inhibitory serpins that exhibit reactive center loop insertion, show a decrease in ANS fluorescence on cleavage with porcine pancreatic elastase and thrombin, respectively. Denaturation studies in guanidinium hydrochloride indicate that the reactive center loop is inserted in the main body of the serpin in the cleaved form of rR345A mutant, while it is exposed in the cleaved form of rWT ovalbumin. These results demonstrate that ANS fluorescence change is an indicator of the loop-inserted or loop-exposed form in these recombinant ovalbumins, and thus could be advantageously used for probing reactive center loop insertion in ovalbumins. The major increase in fluorescence for the rR345A mutant on cleavage primarily arises from a change in ANS binding rather than from the generation of an additional ANS-binding site.  相似文献   

2.
CrmA is an unusual viral serpin that inhibits both cysteine and serine proteinases involved in the regulation of host inflammatory and apoptosis processes. It differs from other members of the serpin superfamily by having a reactive center loop that is one residue shorter, and by its apparent inability to form SDS-stable covalent complexes with cysteine proteinases. To obtain insight into the inhibitory mechanism of crmA, we determined the crystal structure of reactive center loop-cleaved crmA to 2.9 A resolution. The structure, which is the first of a viral serpin, suggests that crmA can inhibit cysteine proteinases by a mechanism analogous to that used by other serpins against serine proteinases. However, one striking difference from other serpins, which may be significant for in vivo function, is an additional highly charged antiparallel strand for b sheet A, whose sequence and length are unique to crmA.  相似文献   

3.
We have demonstrated that interactions within the conserved serpin breach region play a direct role in the critical step of the serpin reaction in which the acyl-enzyme intermediate must first be exposed to hydrolyzing water and aqueous deacylation. Substitution of the breach tryptophan in PAI-1 (Trp175), a residue found in virtually all known serpins, with phenylalanine altered the kinetics of the reaction mechanism and impeded the ability of PAI-1 to spontaneously become latent without compromising the inherent rate of cleaved loop insertion or partitioning between the final inhibited serpin-proteinase complex and hydrolyzed serpin. Kinetic dissection of the PAI-1 inhibitory mechanism using multiple target proteinases made possible the identification of a single rate-limiting intermediate step coupled to the molecular interactions within the breach region. This step involves the initial insertion of the proximal reactive center loop hinge residue(s) into beta-sheet A and facilitates translocation of the distal P'-side of the cleaved reactive center loop from the substrate cleft of the proteinase. Substitution of the tryptophan residue raised the kinetic barrier restricting the initial loop insertion event, significantly retarding the rate-limiting step in tPA reactions in which strong exosite interactions must be overcome for the reaction to proceed.  相似文献   

4.
The Toll signaling pathway, an essential innate immune response in invertebrates, is mediated via the serine protease cascade. Once activated, the serine proteases are irreversibly inactivated by serine protease inhibitors (serpins). Recently, we identified three serpin-serine protease pairs that are directly involved in the regulation of Toll signaling cascade in a large beetle, Tenebrio molitor. Of these, the serpin SPN48 was cleaved by its target serine protease, Spätzle-processing enzyme, at a noncanonical P1 residue of the serpin''s reactive center loop. To address this unique cleavage, we report the crystal structure of SPN48, revealing that SPN48 exhibits a native conformation of human antithrombin, where the reactive center loop is partially inserted into the center of the largest β-sheet of SPN48. The crystal structure also shows that SPN48 has a putative heparin-binding site that is distinct from those of the mammalian serpins. Ensuing biochemical studies demonstrate that heparin accelerates the inhibition of Spätzle-processing enzyme by a proximity effect in targeting the SPN48. Our finding provides the molecular mechanism of how serpins tightly regulate innate immune responses in invertebrates.  相似文献   

5.
The amino acid sequence His-Pro-Phe as N-terminal residues 6-8 of the natural renin substrate, angiotensinogen, is conserved among species. We investigated whether this His-Pro-Phe motif functions as the determinant of the substrate specificity of renin. Mutant angiotensinogens in which the Ile-His-Pro-Phe-His-Leu sequence at positions 5-10 of wild-type angiotensinogen was replaced by either His-Pro-Phe-His-Leu-Leu or Ala-Ile-His-Pro-Phe-His were cleaved by renin at the C-terminal side of residues 9 and 11, respectively, while wild-type angiotensinogen was cleaved at residue 10. A triple Ala substitution for the His-Pro-Phe motif of angiotensinogen prevented its cleavage by renin. In contrast, triple Ala substitution for residues 9-11, including the natural site of cleavage by renin, allowed cleavage between the two Ala residues at positions 10 and 11. Furthermore, the 33-residue C-terminal peptide of human megsin, which carries a naturally occurring His-Pro-Phe sequence, was cleaved by renin at the C-terminal side of the His-Pro-Phe-Leu-Phe sequence. These results indicate that the His-Pro-Phe motif of angiotensinogen is a crucial determinant of the substrate specificity of renin. By binding to a corresponding pocket on renin, the His-Pro-Phe motif may act as a molecular anchor to recruit the scissile peptide bond to a favorable site for catalysis.  相似文献   

6.
Hejgaard J 《Biological chemistry》2005,386(12):1319-1323
Serpins appear to be ubiquitous in eukaryotes, except fungi, and are also present in some bacteria, archaea and viruses. Inhibitory serpins with a glutamine as the reactive-center P1 residue have been identified exclusively in a few plant species. Unique serpins with a reactive center sequence of three Gln residues at P3-P1 or P2-P1' were isolated from barley and wheat grain, respectively. Barley BSZ3 was an irreversible inhibitor of chymotrypsin, with a second-order association rate constant for complex formation k(a)' of the order of 10(4) M(-1) s(-1); however, only a minor fraction of the serpin molecules reacted with chymotrypsin, with the majority insensitive to cleavage in the reactive center loop. Wheat WSZ3 was cleaved specifically at P8 Thr and was not an inhibitor of chymotrypsin. These reactive-center loops may have evolved conformations that are optimal as inhibitory baits for proeinases that specifically degrade storage prolamins containing Gln-rich repetitive sequences, most likely for digestive proteinases of insect pests or fungal pathogens that infect cereals. An assembled full-length amino acid sequence of a serpin expressed in cotton boll fiber (GaZ1) included conserved regions essential for serpin-proteinase interaction, suggesting inhibitory capacity at a putative reactive center P2-P2' with a sequence of four Gln residues.  相似文献   

7.
The function of the serpins as proteinase inhibitors depends on their ability to insert the cleaved reactive centre loop as the fourth strand in the main A beta-sheet of the molecule upon proteolytic attack at the reactive centre, P1-P1'. This mechanism is vulnerable to mutations which result in inappropriate intra- or intermolecular loop insertion in the absence of cleavage. Intermolecular loop insertion is known as serpin polymerisation and results in a variety of diseases, most notably liver cirrhosis resulting from mutations of the prototypical serpin alpha1-antitrypsin. We present here the 2.6 A structure of a polymer of alpha1-antitrypsin cleaved six residues N-terminal to the reactive centre, P7-P6 (Phe352-Leu353). After self insertion of P14 to P7, intermolecular linkage is affected by insertion of the P6-P3 residues of one molecule into the partially occupied beta-sheet A of another. This results in an infinite, linear polymer which propagates in the crystal along a 2-fold screw axis. These findings provide a framework for understanding the uncleaved alpha1-antitrypsin polymer and fibrillar and amyloid deposition of proteins seen in other conformational diseases, with the ordered array of polymers in the crystal resulting from slow accretion of the cleaved serpin over the period of a year.  相似文献   

8.
A central feature of the serpin inhibition mechanism is insertion of the reactive center loop into the central beta-sheet (beta-sheet A). This insertion also occurs when the reactive center loop is cleaved without protease inhibition. Using this effect, we have measured the enthalpy (DeltaH) of loop cleavage and insertion for plasminogen activator inhibitor 1 (PAI-1) as -38 kcal/mol. Because loop insertion can be blocked by incorporating a peptide into the central beta-sheet, it was possible to assign -7 kcal/mol to loop cleavage and -31 kcal/mol to loop insertion. These values are lower than values reported for the serpins alpha 1 -proteinase inhibitor and antithrombin of -53 to -63 kcal/mol, respectively, for loop insertion with negligible enthalpy for loop cleavage. A free energy difference of -9 kcal/mol has been reported between the active and spontaneously loop inserted "latent forms" of PAI-1, which is significantly smaller in magnitude than the -31 kcal/mol of enthalpy we measured for loop insertion. Because the enthalpy should relate closely to those regions of PAI-1 that have moved to lower potential energy, a difference distance matrix is presented that identifies regions of PAI-1 that move during loop insertion.  相似文献   

9.
Cleavage of ovalbumin and angiotensinogen at sites homologous to the reactive centre loop of alpha 1-antitrypsin is not accompanied by the increase in heat-stability associated with the transition from the native stressed (S) structure to a cleaved relaxed (R) form that is typical of other serpins. Failure to undergo the S-R change in ovalbumin is not due to phosphorylation of Ser-344 near the sites of cleavage on the loop. The suggested explanation is the unique presence of bulky side chains at the P10-P12 site in ovalbumin and angiotensinogen.  相似文献   

10.
EspPα and EspI are serine protease autotransporters found in enterohemorrhagic Escherichia coli. They both belong to the SPATE autotransporter family and are believed to contribute to pathogenicity via proteolytic cleavage and inactivation of different key host proteins during infection. Here, we describe the specific cleavage and functional inactivation of serine protease inhibitors (serpins) by EspPα and compare this activity with the related SPATE EspI. Serpins are structurally related proteins that regulate vital protease cascades, such as blood coagulation and inflammatory host response. For the rapid determination of serpin cleavage sites, we applied direct MALDI-TOF-MS or ESI-FTMS analysis of coincubations of serpins and SPATE proteases and confirmed observed cleavage positions using in-gel-digest of SDS-PAGE-separated degradation products. Activities of both serpin and SPATE protease were assessed in a newly developed photometrical assay using chromogenic peptide substrates. EspPα cleaved the serpins α1-protease inhibitor (α1-PI), α1-antichymotrypsin, angiotensinogen, and α2-antiplasmin. Serpin cleavage led to loss of inhibitory function as demonstrated for α1-PI while EspPα activity was not affected. Notably, EspPα showed pronounced specificity and cleaved procoagulatory serpins such as α2-antiplasmin while the anticoagulatory antithrombin III was not affected. Together with recently published research, this underlines the interference of EspPα with hemostasis or inflammatory responses during infection, while the observed interaction of EspI with serpins is likely to be not physiologically relevant. EspPα-mediated serpin cleavage occurred always in flexible loops, indicating that this structural motif might be required for substrate recognition.  相似文献   

11.
The inhibitors that belong to the serpin family are suicide inhibitors that control the major proteolytic cascades in eucaryotes. Recent data suggest that serpin inhibition involves reactive centre cleavage followed by loop insertion, whereby the covalently linked protease is translocated away from the initial docking site. However under certain circumstances, serpins can also be cleaved like a substrate by target proteases. In this report we have studied the conformation of the reactive centre of plasminogen activator inhibitor type 1 (PAI-1) mutants with inhibitory and substrate properties. The polarized steady-state and time-resolved fluorescence anisotropies were determined for BODIPY(R) probes attached to the P1' and P3 positions of the substrate and active forms of PAI-1. The fluorescence data suggest an extended orientational freedom of the probe in the reactive centre of the substrate form as compared to the active form, revealing that the conformation of the reactive centres differ. The intramolecular distance between the P1' and P3 residues in reactive centre cleaved inhibitory and substrate mutants of PAI-1, were determined by using the donor-donor energy migration (DDEM) method. The distances found were 57+/-4 A and 63+/-3 A, respectively, which is comparable to the distance obtained between the same residues when PAI-1 is in complex with urokinase-type plasminogen activator (uPA). Following reactive centre cleavage, our data suggest that the core of the inhibitory and substrate forms possesses an inherited ability of fully inserting the reactive centre loop into beta-sheet A. In the inhibitory forms of PAI-1 forming serpin-protease complexes, this ability leads to a translocation of the cognate protease from one pole of the inhibitor to the opposite one.  相似文献   

12.
Hejgaard J 《FEBS letters》2001,488(3):149-153
Six of seven serpins detected in grains of rye (Secale cereale) were purified and characterized. The amino acid sequence close to the blocked N-terminus, the reactive center loop sequence and the second order association rate constant (k(a)') for irreversible complex formation with chymotrypsin were determined for each serpin. Three of four serpins containing the unusual reactive center P2-P1' QQ/S and one with P2-P1' PQ/M were equally efficient inhibitors of chymotrypsin (k(a)' approximately 10(5) M(-1) s(-1)). One serpin with P2-P1' PY/M was a faster inhibitor (k(a)' approximately 10(6) M(-1) s(-1)). Similar but differently organized glutamine-rich reactive centers were recently found in grain serpins cloned from wheat [Ostergaard et al. (2000) J. Biol. Chem. 275, 33272] but not from barley. The prolamin storage proteins of cereal grains contain similar sequences in their glutamine-rich repeats. A possible adaption of hypervariable serpin reactive centers late in Triticeae cereal evolution as defence against insects feeding on cereal grains is discussed.  相似文献   

13.
The serpins (SERine Proteinase INhibitors) are a family of proteins with important physiological roles, including but not limited to the inhibition of chymotrypsin-like serine proteinases. The inhibitory mechan- ism involves a large conformational change known as the S-->R (stressed-->relaxed) transition. The largest structural differences occur in a region around the scissile bond called the reactive centre loop: In the native (S) state, the reactive centre is exposed, and is free to interact with proteinases. In inhibitory serpins, in the cleaved (R) state the reactive centre loop forms an additional strand within the beta-sheet. The latent state is an uncleaved state in which the intact reactive centre loop is integrated into the A sheet as in the cleaved form, to give an alternative R state.The serpin structures illustrate detailed control of conformation within a single protein. Serpins are also an unusual family of proteins in which homologues have native states with different folding topologies. Determination of the structures of inhibitory serpins in multiple conformational states permits a detailed analysis of the mechanism of the S-->R transition, and of the way in which a single sequence can form two stabilised states of different topology.Here we compare the conformations of alpha(1)-antitrypsin in native and cleaved states. Many protein conformational changes involve relative motions of large rigid subunits. We determine the rigid subunits of alpha(1)-antitrypsin and analyse the changes in their relative position and orientation. Knowing that the conformational change is initiated by cleavage at the reactive centre, we describe a mechanism of the S-->R transition as a logical sequence of mechanical effects, even though the transition likely proceeds in a concerted manner.  相似文献   

14.
The viral serpin, crmA, is distinguished by its small size and ability to inhibit both serine and cysteine proteases utilizing a reactive loop shorter than most other serpins. Here, we characterize the mechanism of crmA inhibition of serine proteases and probe the reactive loop length requirements for inhibition with two crmA reactive loop variants. P1 Arg crmA inhibited the trypsin-like proteases, thrombin, and factor Xa, with moderate efficiencies (approximately 10(2)-10(4) M(-1)sec(-1)), near equimolar inhibition stoichiometries, and formation of SDS-stable complexes which were resistant to dissociation (k(diss) approximately 10(-7) sec(-1)), consistent with a serpin-type inhibition mechanism. Trypsin was not inhibited, but efficiently cleaved the variant crmA as a substrate (k(cat)/K(M) of approximately 10(6) M(-1) sec(-1)). N-terminal sequencing confirmed that the P1 Arg-P1'Cys bond was the site of cleavage. Altering the placement of the Arg in a double mutant P1 Gly-P1'Arg crmA resulted in minimal ability to inhibit any of the trypsin family proteases. This variant was cleaved by the proteases approximately 10-fold less efficiently than P1 Arg crmA. Surprisingly, pancreatic elastase was rapidly inhibited by wild-type and P1 Arg crmAs (10(5)-10(6) M(-1)sec(-1)), although with elevated inhibition stoichiometries and higher rates of complex dissociation. N-terminal sequencing showed that elastase attacked the P1'Cys-P2'Ala bond, indicating that crmA can inhibit proteases using a reactive loop length similar to that used by other serpins, but with variations in this inhibition arising from different effective P2 residues. These results indicate that crmA inhibits serine proteases by the established serpin conformational trapping mechanism, but is unusual in inhibiting through either of two adjacent reactive sites.  相似文献   

15.
The serpins (SERine Proteinase INhibitors) are a family of proteins with important physiological roles, including but not limited to the inhibition of chymotrypsin-like serine proteinases. The inhibitory mechan- ism involves a large conformational change known as the S-->R (stressed-->relaxed) transition. The largest structural differences occur in a region around the scissile bond called the reactive centre loop: In the native (S) state, the reactive centre is exposed, and is free to interact with proteinases. In inhibitory serpins, in the cleaved (R) state the reactive centre loop forms an additional strand within the beta-sheet. The latent state is an uncleaved state in which the intact reactive centre loop is integrated into the A sheet as in the cleaved form, to give an alternative R state.The serpin structures illustrate detailed control of conformation within a single protein. Serpins are also an unusual family of proteins in which homologues have native states with different folding topologies. Determination of the structures of inhibitory serpins in multiple conformational states permits a detailed analysis of the mechanism of the S-->R transition, and of the way in which a single sequence can form two stabilised states of different topology.Here we compare the conformations of alpha(1)-antitrypsin in native and cleaved states. Many protein conformational changes involve relative motions of large rigid subunits. We determine the rigid subunits of alpha(1)-antitrypsin and analyse the changes in their relative position and orientation. Knowing that the conformational change is initiated by cleavage at the reactive centre, we describe a mechanism of the S-->R transition as a logical sequence of mechanical effects, even though the transition likely proceeds in a concerted manner.  相似文献   

16.
Most proteinase inhibitors from plant seeds are assumed to contribute to broad-spectrum protection against pests and pathogens. In oat (Avena sativa L.) grain the main serine proteinase inhibitors were found to be serpins, which utilize a unique mechanism of irreversible inhibition. Four distinct inhibitors of the serpin superfamily were detected by native PAGE as major seed albumins and purified by thiophilic adsorption and anion exchange chromatography. The four serpins OSZa-d are the first proteinase inhibitors characterized from this cereal. An amino acid sequence close to the blocked N-terminus, a reactive centre loop sequence, and the second order association rate constant (ka') for irreversible complex formation with pancreas serine proteinases at 24 degrees C were determined for each inhibitor. OSZa and OSZb, both with the reactive centre scissile bond P1-P1' Thr downward arrow Ser, were efficient inhibitors of pancreas elastase (ka' > 105M-1 s-1). Only OSZb was also an inhibitor of chymotrypsin at the same site (ka' = 0.9 x 105M-1 s-1). OSZc was a fast inhibitor of trypsin at P1-P1' Arg downward arrow Ser (ka' = 4 x 106M-1 s-1); however, the OSZc-trypsin complex was short-lived with a first order dissociation rate constant kd = 1.4 x 10-4 s-1. OSZc was also an inhibitor of chymotrypsin (ka' > 106M-1 s-1), presumably at the overlapping site P2-P1 Ala downward arrow Arg, but > 90% of the serpin was cleaved as substrate. OSZd was cleaved by chymotrypsin at the putative reactive centre bond P1-P1' Tyr downward arrow Ser, and no inhibition was detected. Together the oat grain serpins have a broader inhibitory specificity against digestive serine proteinases than represented by the major serpins of wheat, rye or barley grain. Presumably the serpins compensate for the low content of reversible inhibitors of serine proteinases in oats in protection of the grain against pests or pathogens.  相似文献   

17.
Corticosteroids are transported in the blood by a serpin, corticosteroid-binding globulin (CBG), and their normally equilibrated release can be further triggered by the cleavage of the reactive loop of CBG. We report here the crystal structures of cleaved human CBG (cCBG) at 1.8-Å resolution and its complex with cortisol at 2.3-Å resolution. As expected, on cleavage, CBG undergoes the irreversible S-to-R serpin transition, with the cleaved reactive loops being fully incorporated into the central β-sheet. A connecting loop of helix D, which is in a helix-like conformation in native CBG, unwinds and grossly perturbs the hormone binding site following β-sheet expansion in the cCBG structure but shifts away from the binding site by more than 8 Å following the binding of cortisol. Unexpectedly, on cortisol binding, the hormone binding site of cCBG adopts a configuration almost identical with that of the native conformer. We conclude that CBG has adapted an allosteric mechanism of the serpins to allow equilibrated release of the hormones by a flip-flop movement of the intact reactive loop into and out of the β-sheet. The change in the hormone binding affinity results from a change in the flexibility or plasticity of the connecting loop, which modulates the configuration of the binding site.  相似文献   

18.
Serine Protease inhibitors (Serpins) like antithrombin, antitrypsin, neuroserpin, antichymotrypsin, protein C-inhibitor and plasminogen activator inhibitor is involved in important biological functions like blood coagulation, fibrinolysis, inflammation, cell migration and complement activation. Serpins native state is metastable, which undergoes transformation to a more stable state during the process of protease inhibition. Serpins are prone to conformation defects, however little is known about the factors and mechanisms which promote its conformational change and misfolding. Helix B region in serpins is with several point mutations which result in pathological conditions due to polymerization. Helix B analysis for residue burial and cavity was undertaken to understand its role in serpin structure function. A structural overlap and an accessible surface area analysis showed the deformation of strand 6B and exposure of helix B at N-terminal end in cleaved conformation but not in the native and latent conformation of various inhibitory serpins. A cleaved polymer like conformation of antitrypsin also showed deformation of s6B and helix B exposure. Cavity analysis showed that helix B residues were part of the largest cavity in most of the serpins in the native state which increase in size during the transformation to cleaved and latent states. These data for the first time show the importance of strand 6B deformation and exposure of helix B in smooth insertion of the reactive center loop during serpin inhibition and indicate that helix B exposure due to variants may increase its polymer propensity. ABBREVIATIONS: serpin -serine protease inhibitors RCL -reactive center loop ASA -accessible surface area.  相似文献   

19.
The native form of some proteins such as strained plasma serpins (serine protease inhibitors) and the spring-loaded viral membrane fusion proteins are in a metastable state. The metastable native form is thought to be a folding intermediate in which conversion into the most stable state is blocked by a very high kinetic barrier. In an effort to understand how the spontaneous conversion of the metastable native form into the most stable state is prevented, we designed mutations of alpha1-antitrypsin, a prototype serpin, which can bypass the folding barrier. Extending the reactive center loop of alpha1-antitrypsin converts the molecule into a more stable state. Remarkably, a 30-residue loop extension allows conversion into an extremely stable state, which is comparable to the relaxed cleaved form. Biochemical data strongly suggest that the strain release is due to the insertion of the reactive center loop into the major beta-sheet, A sheet, as in the known stable conformations of serpins. Our results clearly show that extending the reactive center loop is sufficient to bypass the folding barrier of alpha1-antitrypsin and suggest that the constrain held by polypeptide connection prevents the conversion of the native form into the lowest energy state.  相似文献   

20.
BACKGROUND: Plasminogen activator inhibitor 1 (PAI-1) is a serpin that has a key role in the control of fibrinolysis through proteinase inhibition. PAI-1 also has a role in regulating cell adhesion processes relevant to tissue remodeling and metastasis; this role is mediated by its binding to the adhesive glycoprotein vitronectin rather than by proteinase inhibition. Active PAI-1 is metastable and spontaneously transforms to an inactive latent conformation. Previous attempts to crystallize the active conformation of PAI-1 have failed. RESULTS: The crystal structure of a stable quadruple mutant of PAI-1(Asn150-->His, Lys154-->Thr, Gln319-->Leu, Met354-->Ile) in its active conformation has been solved at a nominal 3 A resolution. In two of four independent molecules within the crystal, the flexible reactive center loop is unconstrained by crystal-packing contacts and is disordered. In the other two molecules, the reactive center loop forms intimate loop-sheet interactions with neighboring molecules, generating an infinite chain within the crystal. The overall conformation resembles that seen for other active inhibitory serpins. CONCLUSIONS: The structure clarifies the molecular basis of the stabilizing mutations and the reduced affinity of PAI-1, on cleavage or in the latent form, for vitronectin. The infinite chain of linked molecules also suggests a new mechanism for the serpin polymerization associated with certain diseases. The results support the concept that the reactive center loop of an active serpin is flexible and has no defined conformation in the absence of intermolecular contacts. The determination of the structure of the active form constitutes an essential step for the rational design of PAI-1 inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号