首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The surface energy of the alveolar surfactant layer is determined in the scope of a modification of the structural model of Larsson et al. [(1999) J Disp Sci Technol 20:1-12], according to which this layer is built up of a lipid monolayer adsorbed at the hypophase/air interface and supported by a network of lipid bilayers immersed into the hypophase, i.e., the alveolar liquid. Formulae are derived for the dependence of the specific surface energy of the surfactant layer on the distance between the bilayers constituting the layer. It is shown that at equilibrium this energy can have values comparable with or less than 1 mJ/m2 needed for normal functioning of the alveolus during the respiration cycle. The specific surface energy of the surfactant layer with monolayer-bilayer structure can have such low values only if the layer is of optimal thickness and if the specific line energy of the monolayer-bilayer contact lines is negative and that of the bilayer-bilayer contact lines is positive. It is found that in dynamic regime the change in the specific surface energy of the alveolar surfactant layer with bilayer-monolayer structure is in qualitative agreement with that determined experimentally during lung inflation and deflation.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
Structure of the Azotobacter vinelandii surface layer.   总被引:7,自引:6,他引:1       下载免费PDF全文
Electron microscopy of the Azotobacter vinelandii tetragonal surface array, negatively stained with ammonium molybdate in the presence of 1 mM calcium chloride, showed an apparent repeat frequency of 12 to 13 nm. Image processing showed dominant tetrad units alternating with low-contrast cruciform structures formed at the junction of slender linkers extending from corner macromolecules of four adjoining dominant units. The actual unit cell showed p4 symmetry, and a = b = 18.4 nm. Distilled water extraction of the surface array released a multimeric form of the single 60,000 molecular-weight protein (S protein) which constitutes the surface layer. The molecular weight of the multimer was estimated at 255,000 by gel filtration, indicating a tetrameric structure of four identical subunits and suggesting that this multimer was the morphological subunit of the S layer. Tetrameric S protein exhibited low intrinsic stability once released from the outer membrane, dissociating into monomers when incubated in a variety of buffers including those which served as the base for defined media used to cultivate A. vinelandii. The tetramer could not be stabilized in these buffers at any temperature between 4 and 30 degrees C, but the addition of 2 to 5 mM Ca2+ or Mg2+ completely prevented its dissociation into monomers. Circular dichroism measurements indicated that the secondary structure of the tetramer was dominated by aperiodic and beta-sheet conformations, and the addition of Ca2+ did not produce any gross changes in this structure. Only the tetrameric form of S protein was able to reassemble in vitro in the presence of divalent cations onto the surface of cells stripped of their native S layer.  相似文献   

10.
The effect of prolonged exposure (up to 66 hours) to pure oxygen breathing and to short (5-minute) oxygen breathing combined with acceleration (+5Gz) on the surface tension and surface potential of the alveolar washout of the albino rat lungs was determined. Both experimental conditions produced atelectasis and a decrease of the surfactant surface activity. Possible mechanisms of shifts of the surfactant activity under hyperoxia only, and hyperoxia with accelerations are discussed.  相似文献   

11.
We hypothesized that when the lung makes the transition from the fluid- to the air-filled state at birth, there are changes in physical and functional properties of the alveolar surfactant. To test this hypothesis, newborn rabbits were killed at different times in the first 24 h of life, their lungs lavaged with ice-cold saline, and the lavage fluid subfractionated by differential centrifugation. The phospholipid and protein content and composition and the kinetics of surface tension lowering of the subfractions were examined. We found that with the onset of breathing, shifts occur in the distribution of surfactant subfractions as a surfactant apoprotein-free phospholipid fraction is generated. The ratio of rapidly sedimentable apoprotein-rich to slowly sedimentable, apoprotein-free fractions decreases from 31 at birth to 4 at 24 h of life. Concurrently, rates of surface tension lowering by the subfractions increase with time. The results suggest that the adult pattern of pool sizes and surface activity of alveolar surfactant is not present at birth but evolves slowly over the 1st day of life.  相似文献   

12.
13.
14.
The effects of alveolar large aggregate (LA) and small aggregate (SA) surfactant subfractions isolated from healthy adult rats on mitogen-stimulated proliferative responses of human peripheral blood mononuclear cells (PBMC) was examined. Various concentrations of total surfactant suppressed proliferation of stimulated lymphocytes by up to 95% of mitogen-stimulated cells alone. LA subfractions of total surfactant had no effect on proliferation, whereas SA significantly enhanced the lymphocyte proliferation at lower concentrations (7.8 microg/ml) compared to mitogen-stimulated cells alone. Higher concentrations of SA (62.5 microg/ml) inhibited lymphocyte proliferation. This concentration-dependent effect of SA on proliferation of PBMC was also present when cells were stimulated with various lectins including anti-CD3, concanavalin A and phytohemagglutinin. Analysis of the supernatant of mitogen-stimulated cell cultures treated with inhibitory concentrations of SA showed decreased amounts of interleukin (IL)-2, compared to cells alone, which could be reversed by adding exogenous IL-2 to the cell cultures with the SA. These results suggest that alveolar surfactant subfractions have distinct functions within the alveoli, both biophysically and with respect to their effects on the host's immunomodulatory responses.  相似文献   

15.
16.
Structure of the regular surface layer of Sporosarcina ureae.   总被引:12,自引:11,他引:1       下载免费PDF全文
Optical diffraction and computer image processing of electron micrographs were employed to analyze the structure of the regular surface layer of Sporosarcina ureae at high resolution. Negatively stained preparations of regular surface layer fragments showed two types of tetragonal pattern, each having p4 symmetry in projection with a = 12.8 nm. Although the two patterns differed greatly in overall appearance, both had a common pattern of areas of high stain density which we interpret as arising from gaps or holes in the structure. We speculate that these holes may be related to a protective role of the regular surface layer, whereby hostile environmental agents (such as muramidases) larger than about 2 nm would be screened from the underlying layers of the bacterial surface, while the free passage of nutrients and waste products into and out of the cell would still be allowed.  相似文献   

17.
Pulmonary surfactant isolated from bronchoalveolar lavage fluid of rat lung contained a high content of surfactant protein A (SP-A) in starved for 2 days compared to fed controls, but this phenomena returned to baseline following more than 4 days starvation. As determined by immunoperoxidase staining of lung sections using SP-A antibody, SP-A could be consistently observed in nonciliated bronchiolar (Clara) cells, alveolar type II cells and some alveolar macrophages (AM). Fc receptor-mediated phagocytosis of AM was enhanced by SP-A, which was dependent on the dosis and reached a maximum at 10 micrograms of SP-A/ml. Antibody to SP-A completely inhibited the enhanced response of phagocytosis. When exposed AM subpopulations, separated into four fractions (I, II, III and IV) by discontinuous Percoll gradient, to SP-A or pulmonary surfactant prepared from rats fed and starved for 2 days enhanced their phagocytic activity in high dense cells (III and IV), particularly to SP-A and pulmonary surfactant from rats starved for 2 days. Whereas little change in lower dense fractions (I and II) were seen in all exposures except for SP-A that enhanced the cells of fraction II. These results supported the concept that pulmonary surfactant and its apoprotein, SP-A, are a factor to regulate lung defense system including activation of AM that undergo different processes following starvation.  相似文献   

18.
19.
The process of anaphylactoid response of rats to introduction of egg protein is associated with a decrease of the pulmonary surfactant surface activity. The factors of metabolic surfactant inactivation are as follows: protein accumulation, the disturbance of lipids transport between pulmonary cells and alveolar surface, change in fatty-acidic composition of surfactant phospholipids. The isolation of arachidonic acid from surfactant phospholipids in anaphylactoid shock is an evidence for the participation of the pulmonary surface-active phase in the process of biosynthesis of the lipid mediators in respiratory organs.  相似文献   

20.
Interaction between nanoparticles (NPs) and pulmonary surfactant monolayer plays a very significant role in nanoparticle-based pulmonary drug delivery system. Previous researches have indicated that different properties of nanoparticles can affect their translocation across pulmonary surfactant monolayer. Here we performed coarse-grained molecular dynamics simulation aimed at nanoparticles’ surface charge density effect on their penetration behaviours. Several hydrophilic nanoparticles with different surface charge densities were modelled in the simulations. The results show that NPs’ surface charge density affects their translocation capability: the higher the surface charge densities of NPs are, the worse their translocation capability is. It will cause the structural changes of pulmonary surfactant monolayer, and inhibit the normal phase transition of the monolayer during the compression process. Besides, charged NPs can be adsorbed on the surface of the monolayer after translocation as a stable state, and the adsorption capability of NPs increases generally with the increase of surface charge densities. Our simulation results suggest that the study of nanoparticle-based pulmonary drug delivery system should consider the nanoparticles’ surface charge density effect in order to avoid biological toxicity and improve efficacy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号