首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Incubation of galactose treated Kluyveromyces bulgaricus yeast cells in EDTA/phosphate-buffered saline led to an extract possessing hemagglutinating and yeast flocculating properties. Purification of this extract by affinity chromatography and gel filtration gave two lectin forms, Kb-CWL I and Kb-CWL II, with an apparent molecular mass of 38,000 and 150,000 Da, respectively. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that Kb-CWL I and Kb-CWL II were dimeric and octameric of a subunit of 18,900 Da. At high concentration, purified Kb-CWL I associated to give Kb-CWL II. This association seemed to be independent on pH. The two lectin forms were glycoproteins, the peptide counterpart was very rich in Lys, Glu, and Gly, and the carbohydrate part represented 1% of the whole molecule and was composed of Glc, Man, and Ara. The two lectin forms (KB-CWL I and Kb-CWL II) agglutinated human red blood cells and flocculated EDTA-treated K. bulgaricus yeast cells. The activity of both lectin forms required Ca2+ ions, while Sr2+ showed some competitive inhibition. Optimal activity was obtained within a pH range of 4-6.5 for both forms. Temperatures of 80-90 degrees C for 20 min, or proteolytic treatment reduced irreversibly the activity of Kb-CWL I and Kb-CWL II. The role of the cell wall phosphopeptidomannan as a ligand and a potential physiological receptor of these lectin forms was demonstrated.  相似文献   

2.
Aggregation of the yeast Kluyveromyces bulgaricus is mediated by the galactose-specific lectin KbCWL1. This lectin contains hydrophobic amino acids and its activity is calcium dependent. A specific fluorescent probe, 1-anilinonaphthalene-8-sulfonic acid in the free acid form (ANS; Sigma Chemical Co., St. Louis, Missouri), was used to study the hydrophobic areas on the cellular surface of K. bulgaricus. Changes in surface hydrophobicity during the growth and aggregation of yeast cells were studied. Surface hydrophobicity increased during growth and depended on the amount of yeast cells in the culture medium. During growth, the size of the hydrophobic areas on the cell surface was measured using ANS and was found to increase with the percentage of flocculating yeasts. Our results strongly suggest that the hydrophobic areas of the cell walls of yeast cells are involved in the aggregation of K. bulgaricus.  相似文献   

3.
Co-flocculation is the aggregation of yeasts belonging to different genera or species. Kluyveromyces bulgaricus and Kluyveromyces lactis 5c are self-flocculent, but they can also co-flocculate with the non-flocculent yeast Schizosaccharomyces pombe 972 h(-). This co-flocculation is inhibited by D-galactose and galactose derivatives and involves the binding of a galactose-specific proteinic receptor (or lectin) of Kluyveromyces sp. to the cell wall galactomannans of S. pombe. The proteinic receptor is strongly anchored in the cell wall, it was partially purified by affinity chromatography using immobilized S. pombe galactomannans. This galactose-specific proteinic receptor does not appear to interfere in K. bulgaricus or K. lactis self-flocculation, which is mediated by another galactose-specific lectin weakly linked at the cell wall.  相似文献   

4.
Kluyveromyces bulgaricus is a yeast which, upon culture in a calcium-enriched glucose-peptone medium, flocculates. Its flocculation can be reversed by the addition of galactose. In this paper, it is shown that two lectins can be isolated either from the concentrated culture broth or from the supernatant of deflocculated cells suspended in galactose solution. The N-acetylglucosamine-specific lectin, at pH 7.4, agglutinates untreated sheep red blood cells, but agglutinates neither untreated rabbit red blood cells nor glutaraldehyde-fixed sheep or rabbit red blood cells. Conversely, at pH 4.5, this lectin agglutinates glutaraldehyde-fixed sheep red blood cells. The galactose-specific lectin, at pH 7.4, agglutinates both untreated and glutaraldehyde-fixed rabbit red blood cells but does not agglutinate untreated or glutaraldehyde-fixed sheep red blood cells. At pH 4.5, this lectin agglutinates both glutaraldehyde-fixed sheep and rabbit red blood cells and induces flocculation of deflocculated K. bulgaricus cells. In all cases, the agglutination and the flocculation induced by one of these two lectins were inhibited by free or conjugated N-acetyl-D-glucosamine or by free or conjugated D-galactose, respectively. No glycosylhydrolase activity could be detected in the purified lectins.  相似文献   

5.
AIMS: Antagonist activity of Kluyveromyces spp. isolates on Aspergillus section Flavi was studied. METHODS AND RESULTS: The screening of isolates were made through studies of growth at different water activities and temperatures, index of dominance (I(D)), ecological similarity, antifungal activity and impact on aflatoxin B1 accumulation. High optical density was obtained at 25 and 30 degrees C and 48 h of incubation. Cell growth decreases with decrease in water activity. The predominant interaction was mutual intermingling at a(w) = 0.982 and 0.955, while at a(w) = 0.999 and 0.937 mutual inhibition for contact was exhibited. All isolates were catabolically identical to Aspergillus section Flavi and compete by nutritional source. At high water activities yeasts showed inhibitory activity on Aspergillus strains, inhibition percentages varied between 75 and 100%. The isolates Y9, Y14, Y16, Y22, Y25 and Y33 showed antifungal activity and inhibitory activity on aflatoxin B1 accumulation at all water activities assayed from all Aspergillus section Flavi strains. CONCLUSIONS: The data show that the isolates selected in a wide range of environmental conditions could exert their roll like biological control agents for Aspergillus section Flavi in storage maize ecosystem. SIGNIFICANCE AND IMPACT OF THE STUDY: Isolates of Kluyveromyces spp. may have practical value in the postharvest control of storage maize.  相似文献   

6.
Twelve lactose-assimilating strains of the yeast species Kluyveromyces marxianus and its varieties marxianus, lactis and bulgaricus were studied with respect to transport mechanisms for lactose, glucose and galactose, fermentation of these sugars and the occurrence of extracellular lactose hydrolysis. The strains fell into three groups. Group I (two strains): Fermentation of lactose, glucose and galactose, extracellular lactose hydrolysis, apparent facilitated diffusion of glucose and galactose; Group II (two strains): Lactose not fermented, glucose and galactose fermented and transported by an apparent proton symport, extracellular hydrolysis of lactose present (one strain) or questionable; Group III (eight strains): Lactose, glucose and galactose fermented, lactose transported by an apparent proton symport mechanism, extracellular hydrolysis of lactose and transport modes for glucose and galactose variable.  相似文献   

7.
In this Study the effects of both pH and organic acids on Helicobacter pylori NCTC 11637 were tested. Lactobacillus acidophilus, Lact. casei, Lact. bulgaricus, Pediococcus pentosaceus and Bifidobacterium bifidus were assayed for their lactic acid production, pH and inhibition of H. pylori growth. A standard antimicrobial plate well diffusion assay was employed to examine inhibitory effects. Lactic, acetic and hydrochloric acids demonstrated inhibition of H. pylori growth in a concentration-dependent manner with the lactic acid demonstrating the greatest inhibition. This inhibition was due both to the pH of the solution and its concentration. Six strains of Lact. acidophilus and one strain of Lact. casei subsp. rhamnosus inhibited H. pylori growth where as Bifidobacterium bifidus, Ped. pentosaceus and Lact. bulgaricus did not. Concentrations of lactic acid produced by these strains ranged from 50 to 156 mmol 1−1 and correlated with H. pylori inhibition. The role of probiotic organisms and their metabolic by-products in the eradication of H. pylori in vivo remains to be determined.  相似文献   

8.
The gene encoding the precursor to stinging nettle (Urtica dioica L. ) isolectin I was introduced into tobacco (Nicotiana tabacum). In transgenic plants this precursor was processed to mature-sized lectin. The mature isolectin is deposited intracellularly, most likely in the vacuoles. A gene construct lacking the C-terminal 25 amino acids was also introduced in tobacco to study the role of the C terminus in subcellular trafficking. In tobacco plants that expressed this construct, the mutant precursor was correctly processed and the mature isolectin was targeted to the intercellular space. These results indicate the presence of a C-terminal signal for intracellular retention of stinging nettle lectin and most likely for sorting of the lectin to the vacuoles. In addition, correct processing of this lectin did not depend on vacuolar deposition. Isolectin I purified from tobacco displayed identical biological activities as isolectin I isolated from stinging nettle. In vitro antifungal assays on germinated spores of the fungi Botrytis cinerea, Trichoderma viride, and Colletotrichum lindemuthianum revealed that growth inhibition by stinging nettle isolectin I occurs at a specific phase of fungal growth and is temporal, suggesting that the fungi had an adaptation mechanism.  相似文献   

9.
Aims: The purpose of this study was to demonstrate the usefulness of lectin obtained from Talisia esculenta (TEL) seeds as a tool to recognize and study Microsporum canis. For this purpose, we investigated the antifungal and marker action of this lectin and the relationship of these effects with the presence of carbohydrates on the structure of this fungus. Methods and Results: The in vitro antifungal activity of TEL was analysed by broth microdilution assay. In addition, TEL was assessed against the arthroconidia present on hairs obtained from infected dogs and cats. The affinity of fluorescein isothiocyanate (FITC)‐labelled TEL for macroconidia and arthroconidia of M. canis was also tested. The effects of TEL on the growth of the M. canis strains began with 0·125 mg ml?1, and 100% inhibition was obtained with a concentration of 2 mg ml?1. The addition of carbohydrates, especially N‐acetyl‐glucosamine and d ‐mannose, inhibited these antifungal effects. TEL was able to inhibit the growth of arthroconidial chitin‐rich forms of M. canis obtained from hairs of infected animals and strains cultured in Sabouraud agar. FITC‐labelled TEL efficiently marked macroconidial and arthroconidial forms of M. canis, as shown by fluorescent microscopy. Conclusions: These results show that the inhibitory effects of TEL on M. canis growth may be related to the interaction of lectin with the carbohydrates present at the micro‐organism’s surface, mainly d ‐mannose and N‐acetyl‐glucosamine. Significance and Impact of the Study: Talisia esculenta can be used as an important tool in the biochemical study of M. canis or as a molecule to recognize this dermatophyte in infected tissue.  相似文献   

10.
The inhibition of growth by octanoic or decanoic acids, two subproducts of ethanolic fermentation, was evaluated in Saccharomyces cerevisiae and Kluyveromyces marxianus in association with ethanol, the main product of fermentation. In both strains, octanoic and decanoic acids, at concentrations up to 16 and 8 mg/liter, respectively, decreased the maximum specific growth rate and the biomass yield at 30°C as an exponential function of the fatty acid concentration and increased the duration of growth latency. These toxic effects increased with a decrease in pH in the range of 5.4 to 3.0, indicating that the undissociated form is the toxic molecule. Decanoic acid was more toxic than octanoic acid. The concentrations of octanoic and decanoic acids were determined during the ethanolic fermentation (30°C) of two laboratory media (mineral and complex) by S. cerevisiae and of Jerusalem artichoke juice by K. marxianus. Based on the concentrations detected (0.7 to 23 mg/liter) and the kinetics of growth inhibition, the presence of octanoic and decanoic acids cannot be ignored in the evaluation of the overall inhibition of ethanolic fermentation.  相似文献   

11.
Hydrolysis of lactose by immobilized microorganisms.   总被引:1,自引:0,他引:1  
Cells of Lactobacillus bulgaricus, Escherichia coli, and Kluyveromyces (Saccharomyces) lactis immobilized in polyacrylamide gel beads retained 27 to 61% of the beta-galactosidase activity of intact cells. Optimum temperature and pH and thermostability of these microbial beta-galactosidases were negligibly affected by the immobilization. Km values of beta-galactosidase in immobilized cells of L. bulgaricus, E. coli, and K. lactis toward lactose were 4.2, 5.4, and 30 mM, respectively. Neither inhibition nor activation of beta-galactosidase in immobilized L. bulgaricus and E. coli appeared in the presence of galactose, but remarkable inhibition by galactose was detected in the case of the enzyme of immobilized K. lactis. Glucose inhibited noncompetitively the activity of three species of immobilized microbial cells. These kinetic properties were almost the same as those of free beta-galactosidase extracted from individual microorganisms. The activity of immobilized K. lactis was fairly stable during repeated runs, but those of E. coli and L. bulgaricus decreased gradually. These immobilized microbial cells, when introduced into skim milk, demonstrated high activity for converting lactose to monosaccharides. The flavor of skim milk was hardly affected by treatment with these immobilized cells, although the degree of sweetness was raised considerably.  相似文献   

12.
Cells of Lactobacillus bulgaricus, Escherichia coli, and Kluyveromyces (Saccharomyces) lactis immobilized in polyacrylamide gel beads retained 27 to 61% of the beta-galactosidase activity of intact cells. Optimum temperature and pH and thermostability of these microbial beta-galactosidases were negligibly affected by the immobilization. Km values of beta-galactosidase in immobilized cells of L. bulgaricus, E. coli, and K. lactis toward lactose were 4.2, 5.4, and 30 mM, respectively. Neither inhibition nor activation of beta-galactosidase in immobilized L. bulgaricus and E. coli appeared in the presence of galactose, but remarkable inhibition by galactose was detected in the case of the enzyme of immobilized K. lactis. Glucose inhibited noncompetitively the activity of three species of immobilized microbial cells. These kinetic properties were almost the same as those of free beta-galactosidase extracted from individual microorganisms. The activity of immobilized K. lactis was fairly stable during repeated runs, but those of E. coli and L. bulgaricus decreased gradually. These immobilized microbial cells, when introduced into skim milk, demonstrated high activity for converting lactose to monosaccharides. The flavor of skim milk was hardly affected by treatment with these immobilized cells, although the degree of sweetness was raised considerably.  相似文献   

13.
Hybridization studies between strains of Kluyveromyces marxianus and the remaining species of the genus involving the use of auxotrophic mutants, are reported. K. marxianus was found to be interfertile with K. bulgaricus, K. cicerisporus, K. dobzhanskii, K. drosophilarum, K. fragilis, K. lactis, K. phaseolosporus, K. vanudenii and K. wikenii. Accepting interfertility as criterion for conspecificity, these nine syngamous taxa are relegated to the status of biotypes or physiologic races of a single species K. marxianus.  相似文献   

14.
15.
The degree of sensitivity of the yeasts Kluyveromyces bulgaricus and K. lactis to amphotericin B is linked to a difference in the sterol composition of their membranes. No direct proportionality was found between sensitivity and the quantity of sterols present. At sublethal doses, amphotericin B perturbed sterol synthesis, resulting in ergosterol precursor accumulation. An ergosterol pathway is proposed for Kluyveromyces.  相似文献   

16.
Doubling times were measured during exponential growth of 19 strains belonging to 10 of the 17 species of the yeast genus Kluyveromyces. Growth was in shaken aerobic batch culture at 25°C, in a chemically defined medium with d-glucose as sole carbon source. Doubling times were strikingly uniform, being mainly between 2 and 3.5 h.  相似文献   

17.
In studies of yeast flocculation it has been found that low concentrations of vanadium contained in sodium orthovanadate do not affect the growth and the cell-cell adhesion of the yeast Kluyveromyces bulgaricus, whereas high concentrations delay the growth of the yeasts and strongly inhibit flocculation. Moreover, higher sensitivity to Hygromycin B and calcofluor white was taken to imply altered cell wall integrity which is supported by compositional analysis of the extracted phosphopeptidomannans. Yeasts grown on sodium orthovanadate show a decrease in the percentage of phosphopeptidomannans and their compositions. It is proposed that the vanadium contained in sodium orthovanadate has a similar conformation to phosphorus and competes with phosphorus in phosphorylated compounds. The decrease of carbohydrate components and phosphorus linking to phosphopeptidomannans detected may alter their structure and modify ligand binding properties.  相似文献   

18.
Kluyveromyces marxianus is a promising nonconventional yeast for biobased chemical production due to its rapid growth rate, high TCA cycle flux, and tolerance to low pH and high temperature. Unlike Saccharomyces cerevisiae, K. marxianus grows on low-cost substrates to cell densities that equal or surpass densities in glucose, which can be beneficial for utilization of lignocellulosic biomass (xylose), biofuel production waste (glycerol), and whey (lactose). We have evaluated K. marxianus for the synthesis of polyketides, using triacetic acid lactone (TAL) as the product. The 2-pyrone synthase (2-PS) was expressed on a CEN/ARS plasmid in three different strains, and the effects of temperature, carbon source, and cultivation strategy on TAL levels were determined. The highest titer was obtained in defined 1% xylose medium at 37°C, with substantial titers at 41 and 43°C. The introduction of a high-stability 2-PS mutant and a promoter substitution increased titer four-fold. 2-PS expression from a multi-copy pKD1-based plasmid improved TAL titers a further five-fold. Combining the best plasmid, promoter, and strain resulted in a TAL titer of 1.24 g/L and a yield of 0.0295 mol TAL/mol carbon for this otherwise unengineered strain in 3 ml tube culture. This is an excellent titer and yield (on xylose) before metabolic engineering or fed-batch culture relative to other hosts (on glucose), and demonstrates the promise of this rapidly growing and thermotolerant yeast species for polyketide production.  相似文献   

19.
Yeast biomass enriched with iron could represent a new and safer solution for prevention from anaemia development. Such an iron source is less toxic and has better absorbability in organisms. The purpose of our research was the determination of the most suitable iron source in the cultivation medium for the yeast Saccharomyces cerevisiae, regarding good growth and iron accumulation in cells. Iron(III) citrate, iron(III) chloride, iron(III) nitrate and Fe-EDTA complex were used. The uptake of the chosen iron compound, Fe(III) citrate, by the yeasts Candida intermedia and Kluyveromyces marxianus was also investigated. Different growth behaviour of the three yeast strains in the presence of Fe(III) citrate was observed. The highest amounts of accumulated iron in S. cerevisiae, C. intermedia and K. marxianus biomass were about 13, 20 and 34mgFeg(-1)dry wt., respectively. To optimise the accumulation of iron in K. marxianus and to characterise iron enriched yeast biomass, further experiments are needed.  相似文献   

20.
AIMS: To test the suitability of cheese whey powder (CWP) solution for ethanol fermentation and to compare performances of different Kluyveromyces marxianus strains for ethanol fermentation from CWP solution. METHODS AND RESULTS: Batch ethanol fermentation of cheese whey (CW), CWP and lactose solutions with the same initial sugar contents were compared by using two different K. marxianus strains and the CWP solution was found to be the most suitable substrate. CWP solution was fermented to ethanol using three different yeast strains and DSMZ-7239 was found to be the most suitable one yielding the highest rate and extent (3.3%, v/v) of ethanol formation. CONCLUSIONS: CWP solution and K. marxianus strain of DSMZ-7239 were found to be more suitable for ethanol fermentation with the highest ethanol yield when compared with the other substrates and the yeast strains tested. SIGNIFICANCE AND IMPACT OF THE STUDY: CWP can be used as a concentrated form of CW for ethanol fermentations with considerable advantages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号