首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-throughput sequencing is a revolutionary technological innovation in DNA sequencing.This technology has an ultra-low cost per base of sequencing and an overwhelmingly high data output.High-throughput sequencing has brought novel research methods and solutions to the research fields of genomics and post-genomics.Furthermore,this technology is leading to a new molecular breeding revolution that has landmark significance for scientific research and enables us to launch multi-level,multi-faceted,and multi-extent studies in the fields of crop genetics,genomics,and crop breeding.In this paper,we review progress in the application of high-throughput sequencing technologies to plant molecular breeding studies.  相似文献   

2.
During the current genomics revolution, the genomes of a large number of living organisms have been fully sequenced. However, with the advent of new sequencing technologies, genomics research is now at the threshold of a second revolution. Several second-generation sequencing platforms became available in 2007, but a further revolution in DNA resequencing technologies is being witnessed in 2008, with the launch of the first single-molecule DNA sequencer (Helicos Biosciences), which has already been used to resequence the genome of the M13 virus. This review discusses several single-molecule sequencing technologies that are expected to become available during the next few years and explains how they might impact on genomics research.  相似文献   

3.
Forward Genomics – a comparative genomics approach to link phenotype to genotype Despite availability of several sequenced genomes, we know very little about the specific changes in the DNA that underlie phenotypic differences between species. The main reason is that species differ by both numerous genomic and phenotypic changes. A new comparative genomics method addresses this question by for phenotypes with independent evolutionary losses by searching for genomic regions that exhibit an elevated number of mutations in exactly these phenotype‐loss species. The near future sequencing of thousands of novel genomes will make it possible to use comparative genomics to systematically search for such DNA changes that are associated with phenotypic differences.  相似文献   

4.
Phylogeographic genomics, based on multiple complete mtDNA genome sequences from within individual vertebrate species, provides highly-resolved intraspecific trees for the detailed study of evolutionary biology. We describe new biogeographic and historical insights from our studies of the genomes of codfish, wolffish, and harp seal populations in the Northwest Atlantic, and from the descendants of the founding human population of Newfoundland. Population genomics by conventional sequencing methods remains laborious. A new biotechnology, iterative DNA “re-sequencing”, uses a DNA microarray to recover 30–300 kb of contiguous DNA sequence in a single experiment. Experiments with a single-species mtDNA microarray show that the method is accurate and efficient, and sufficiently species-specific to discriminate mtDNA genomes of moderately-divergent taxa. Experiments with a multi-species DNA microarray (the “ArkChip”) show that simultaneous sequencing of species in different orders and classes detects SNPs within each taxon with equal accuracy as single-species-specific experiments. Iterative DNA sequencing offers a practical method for high-throughput biodiversity genomics that will enable standardized, coordinated investigation of multiple species of interest to Species at Risk and conservation biologists.  相似文献   

5.
DNA microarray and next-generation DNA sequencing technologies are important tools for high-throughput genome research, in revealing both the structural and functional characteristics of genomes. In the past decade the DNA microarray technologies have been widely applied in the studies of functional genomics, systems biology and pharmacogenomics. The next-generation DNA sequencing method was first introduced by the 454 Company in 2003, immediately followed by the establishment of the Solexa and Solid techniques by other biotech companies. Though it has not been long since the first emergence of this technology, with the fast and impressive improvement, the application of this technology has extended to almost all fields of genomics research, as a rival challenging the existing DNA microarray technology. This paper briefly reviews the working principles of these two technologies as well as their application and perspectives in genome research. Supported by the National High-Tech Research Program of China (Grant No.2006AA020704) and Shanghai Science and Technology Commission (Grant No. 05DZ22201)  相似文献   

6.
单细胞基因组学分析的技术前沿   总被引:1,自引:0,他引:1  
Pan XH  Zhu HY  Marjani SL 《遗传》2011,33(1):17-24
基因组学已经深刻地改变了生命科学的诸多领域的面貌。目前它的主要内容是新的全基因组碱基序列的测定和在全基因组范围内鉴定那些在不同水平上影响生命活动的基因群的功能和相互作用。为达此要求,近年出现的第二代测序(深度测序)技术和基因芯片技术发挥了关键作用,但是两者都需要足够的高质量的核酸样品。所以,在只有或只能用单细胞或极少量细胞的情况下,如果没有特殊手段,上述分析往往不能常规、方便地进行。文章以DNA扩增为主线,综合阐述了目前在单细胞(特别是微生物)全基因组测序和大基因组的靶向重测序,以及对单细胞或微量细胞进行的基于深度测序或芯片杂交的功能基因组分析,如转录组、ChIP和DNA的CpG甲基化分析等的最新策略和技术,评价了单细胞基因组测序和功能基因组学各技术的特点并对发展前景进行了展望。  相似文献   

7.
Next generation DNA sequencing (NGS) is rapidly becoming a pervasive technique within the human genetics community. The analysis of NGS data is however much more challenging than with previous genetic and genomics techniques. In this article, the basic data formats and analysis steps that are involved in any NGS DNA resequencing experiment are described. Special emphasis is placed on methods for quality control.  相似文献   

8.
Next generation sequencing (NGS) is revolutionizing genomics and is providing novel insights into genome organization, evolution and function. The number of plant genomes targeted for sequencing is rising. For the moment, however, the acquisition of full genome sequences in large genome species remains difficult, largely because the short reads produced by NGS platforms are inadequate to cope with repeat-rich DNA, which forms a large part of these genomes. The problem of sequence redundancy is compounded in polyploids, which dominate the plant kingdom. An approach to overcoming some of these difficulties is to reduce the full nuclear genome to its individual chromosomes using flow-sorting. The DNA acquired in this way has proven to be suitable for many applications, including PCR-based physical mapping, in situ hybridization, forming DNA arrays, the development of DNA markers, the construction of BAC libraries and positional cloning. Coupling chromosome sorting with NGS offers opportunities for the study of genome organization at the single chromosomal level, for comparative analyses between related species and for the validation of whole genome assemblies. Apart from the primary aim of reducing the complexity of the template, taking a chromosome-based approach enables independent teams to work in parallel, each tasked with the analysis of a different chromosome(s). Given that the number of plant species tractable for chromosome sorting is increasing, the likelihood is that chromosome genomics – the marriage of cytology and genomics – will make a significant contribution to the field of plant genetics.  相似文献   

9.
非损伤性取样被广泛应用在动物保护遗传学、分子生态学和分子进化等研究领域.随着基因组测序技术的发展和基因组学时代的到来,如何从非损伤性取样样品中获取能够用于进行基因组测序的高质量DNA是研究者面临的难题.本文总结和比较了非损伤性取样中最常用的粪便样品和考古材料或博物馆标本两类样品中富集宿主DNA的方法及应用,以期为非损伤...  相似文献   

10.
合成基因组学:设计与合成的艺术   总被引:1,自引:0,他引:1  
随着基因组相关技术(测序、编辑、合成等)和知识(功能基因组学)的日益成熟,合成基因组学在本世纪迎得了发展的契机。病毒、原核生物的全基因组相继被化学合成并支持生命的存活,第1个真核生物合成基因组计划已经完成过半,人类基因组编写计划提上日程。在基因组合成的实践过程中,研究者们不断探索对基因组进行重编和设计所应遵循的规则,提高从头合成、组装和替换基因组的技术手段。合成基因组在工业、环境、健康和基础研究领域有着广阔的应用前景,同时也带来了相应的伦理问题。结合在Sc2.0计划中的基因组合成研究和近期合成基因组学所取得的重大进展,本文综述了基因组设计和合成相关的科学、技术和伦理内容,并探讨了未来发展所面对的挑战。作为合成生物学最重要的领域之一,合成基因组学方兴未艾。  相似文献   

11.
Review papers describing recent achievements of genomics usually do not pay attention to direct interrelation between genomics and genosystematics (DNA-systematics). Genomics on general is based in complete DNA sequencing of genomes. Initial aim of genosystematics was the same. Absence of historical perspective in review papers devoted to genomics decreases its value. In case it is done deliberately it becomes the problem of scientific ethics. It is postulated that genomics is a natural stage of genosystematics (DNA-systematics) development. Russian scientists were among the founders of these branches of biology.  相似文献   

12.
In recent years there have been tremendous advances in our ability to rapidly and cost-effectively sequence DNA. This has revolutionized the fields of genetics and biology, leading to a deeper understanding of the molecular events in life processes. The rapid technological advances have enormously expanded sequencing opportunities and applications, but also imposed strains and challenges on steps prior to sequencing and in the downstream process of handling and analysis of these massive amounts of sequence data. Traditionally, sequencing has been limited to small DNA fragments of approximately one thousand bases (derived from the organism's genome) due to issues in maintaining a high sequence quality and accuracy for longer read lengths. Although many technological breakthroughs have been made, currently the commercially available massively parallel sequencing methods have not been able to resolve this issue. However, recent announcements in nanopore sequencing hold the promise of removing this read-length limitation, enabling sequencing of larger intact DNA fragments. The ability to sequence longer intact DNA with high accuracy is a major stepping stone towards greatly simplifying the downstream analysis and increasing the power of sequencing compared to today. This review covers some of the technical advances in sequencing that have opened up new frontiers in genomics.  相似文献   

13.
The success in complete sequencing of "small" genomes and development of new technologies which sharply accelerate processes of cloning and sequencing made real an intensive development of plant genomics and complete sequencing of DNA of some species. It is assumed that the success in plant genomics will result in revolutionary changes in biotechnology and plant breeding. However, the enormous size of genomes (tens of billions bp), their extraordinary enrichment in repetitive sequences, and allopolyploidy (the presence in a nucleus of several related but not identical genomes) force us to think that only few "basic" will undergo complete sequencing, whereas the genome investigations in other species will follow principles of comparative genomics. By the present time, complete sequencing of the Arabidopsis genome (125 Mbp) is completed and that of the rice genome (about 430 Mbp) is close to its end. Studying other plant genomes, including those economically valuable, already began on the basis of these investigations. Peculiarities of plant genomes make extraordinarily important the knowledge on plant chromosomes which, in its turn, requires expansion of investigations in this direction and development of new chromosome technologies, including the DNA-sparing methods of high-resolution banding.  相似文献   

14.
高通量测序技术在动植物研究领域中的应用   总被引:4,自引:0,他引:4       下载免费PDF全文
高通量测序是核酸测序研究的一次革命性技术创新, 该技术以极低的单碱基测序成本和超高的数据产出量为特征, 为基因组学和后基因组学研究带来了新的科研方法和解决方案. 在动植物研究领域, 高通量测序引领了一次具有里程碑意义的科学研究模式革新, 科研人员可利用该技术在基因组、转录组和表观基因组等领域展开多层次多方面多水平研究. 本文就高通量测序技术应用于动植物基因组学和功能基因组学研究进展进行了系统阐述, 并对当前高通量测序技术的现状和热点及未来的发展趋势作了深入剖析和讨论.  相似文献   

15.
The high-throughput - next generation sequencing (HT-NGS) technologies are currently the hottest topic in the field of human and animals genomics researches, which can produce over 100 times more data compared to the most sophisticated capillary sequencers based on the Sanger method. With the ongoing developments of high throughput sequencing machines and advancement of modern bioinformatics tools at unprecedented pace, the target goal of sequencing individual genomes of living organism at a cost of $1,000 each is seemed to be realistically feasible in the near future. In the relatively short time frame since 2005, the HT-NGS technologies are revolutionizing the human and animal genome researches by analysis of chromatin immunoprecipitation coupled to DNA microarray (ChIP-chip) or sequencing (ChIP-seq), RNA sequencing (RNA-seq), whole genome genotyping, genome wide structural variation, de novo assembling and re-assembling of genome, mutation detection and carrier screening, detection of inherited disorders and complex human diseases, DNA library preparation, paired ends and genomic captures, sequencing of mitochondrial genome and personal genomics. In this review, we addressed the important features of HT-NGS like, first generation DNA sequencers, birth of HT-NGS, second generation HT-NGS platforms, third generation HT-NGS platforms: including single molecule Heliscope™, SMRT™ and RNAP sequencers, Nanopore, Archon Genomics X PRIZE foundation, comparison of second and third HT-NGS platforms, applications, advances and future perspectives of sequencing technologies on human and animal genome research.  相似文献   

16.
Rice is an important crop and major model plant for monocot functional genomics studies. With the establishment of various genetic resources for rice genomics, the next challenge is to systematically assign functions to predicted genes in the rice genome. Compared with the robustness of genome sequencing and bioinformatics techniques, progress in understanding the function of rice genes has lagged, hampering the utilization of rice genes for cereal crop improvement. The use of transfer DNA (T‐DNA) insertional mutagenesis offers the advantage of uniform distribution throughout the rice genome, but preferentially in gene‐rich regions, resulting in direct gene knockout or activation of genes within 20–30 kb up‐ and downstream of the T‐DNA insertion site and high gene tagging efficiency. Here, we summarize the recent progress in functional genomics using the T‐DNA‐tagged rice mutant population. We also discuss important features of T‐DNA activation‐ and knockout‐tagging and promoter‐trapping of the rice genome in relation to mutant and candidate gene characterizations and how to more efficiently utilize rice mutant populations and datasets for high‐throughput functional genomics and phenomics studies by forward and reverse genetics approaches. These studies may facilitate the translation of rice functional genomics research to improvements of rice and other cereal crops.  相似文献   

17.
Mine reclamation succeeds when healthy, self‐sustaining ecosystems develop on previously mined lands. Regulations require reclamation of ecosystem services; however, there are few specified targets, and those that are presented are vague. Sequencing genomic DNA and transcribed RNA from environmental samples may provide critical supportive information for attempts to recreate ecosystem functions from the ground up on disturbed lands. In this review, we highlight the use of genomics to meet mine closure goals, to enhance ecosystem development, and to optimize ecosystem services inherent in self‐sustaining reclaimed ecosystems. We address the development of environmental genomics—sequencing and analysis of environmentally derived DNA—to characterize microbial communities on mine sites. We then provide four areas where genomics has proven instrumental for informing management and assisting in reclamation of mine sites in the form of bioreactors, passive treatment systems, novel gene discovery, and DNA barcoding. Finally, we describe how recently developed techniques have transferable value to mine reclamation and provide evidence for future applications of genomics and the necessary steps to integrate these data into comprehensive management of mined sites.  相似文献   

18.
Massively parallel DNA sequencing is revolutionizing genomics research throughout the life sciences. However, the reagent costs and labor requirements in current sequencing protocols are still substantial, although improvements are continuously being made. Here, we demonstrate an effective alternative to existing sample titration protocols for the Roche/454 system using Fluorescence Activated Cell Sorting (FACS) technology to determine the optimal DNA-to-bead ratio prior to large-scale sequencing. Our method, which eliminates the need for the costly pilot sequencing of samples during titration is capable of rapidly providing accurate DNA-to-bead ratios that are not biased by the quantification and sedimentation steps included in current protocols. Moreover, we demonstrate that FACS sorting can be readily used to highly enrich fractions of beads carrying template DNA, with near total elimination of empty beads and no downstream sacrifice of DNA sequencing quality. Automated enrichment by FACS is a simple approach to obtain pure samples for bead-based sequencing systems, and offers an efficient, low-cost alternative to current enrichment protocols.  相似文献   

19.
In the last 20 years, the applications of genomics tools have completely transformed the field of microbial research. This has primarily happened due to revolution in sequencing technologies that have become available today. This review therefore, first describes the discoveries, upgradation and automation of sequencing techniques in a chronological order, followed by a brief discussion on microbial genomics. Some of the recently sequenced bacterial genomes are described to explain how complete genome data is now being used to derive interesting findings. Apart from the genomics of individual microbes, the study of unculturable microbiota from different environments is increasingly gaining importance. The second section is thus dedicated to the concept of metagenomics describing environmental DNA isolation, metagenomic library construction and screening methods to look for novel and potentially important genes, enzymes and biomolecules. It also deals with the pioneering studies in the area of metagenomics that are offering new insights into the previously unappreciated microbial world. The authors have contributed equally to the work  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号