首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 164 毫秒
1.
Zhou Y  Lin XW  Yang Q  Zhang YR  Yuan JQ  Lin XD  Xu R  Cheng J  Mao C  Zhu ZR 《Biochimie》2011,93(7):1124-1131
Ceramidase plays an important role in regulating the metabolism of sphingolipids, such as ceramide, sphingosine (SPH), and sphingosine-1-phosphate (S1P), by controlling the hydrolysis of ceramide. Here we report the cloning and biochemical characterization of a neutral ceramidase from the red flour beetle Tribolium castaneum which is an important storage pest. The Tribolium castaneum neutral ceramidase (Tncer) is a protein of 696 amino acids. It shares a high degree of similarity in protein sequence to neutral ceramidases from various species. Tncer mRNA levels are higher in the adult stage than in pre-adult stages, and they are higher in the reproductive organs than in head, thorax, and midgut. The mature ovary has higher mRNA levels than the immature ovary. Tncer is localized to the plasma membrane. It uses various ceramides (D-erythro-C6, C12, C16, C18:1, and C24:1-ceramide) as substrates and has an abroad pH optimum for its in vitro activity. Tncer has an optimal temperature of 37 °C for its in vitro activity. Its activity is inhibited by Fe2+. These results suggest that Tncer has distinct biochemical properties from neutral ceramidases from other species.  相似文献   

2.
The hepatopancreas of oyster, Crassostrea virginica, was found to contain two unique glycosphingolipid (GSL) cleaving enzymes, ceramide glycanase (CGase) and ceramidase. These two enzymes were found to be tightly associated together through the consecutive purification steps including gel filtration, hydrophobic interaction and cation-exchange chromatographies. They were separated only by preparatory SDS-PAGE. The purified CGase was found to have a molecular mass of 52 kDa and pH optimum of 3.2–3.3. This enzyme prefers to hydrolyze the acidic GSLs, II3SO3LacCer and gangliosides over the neutral GSLs. Oyster ceramidase was found to have a molecular mass of 88 kDa and pH optimum of 4–4.5. Since oyster ceramidase greatly prefers ceramides with C6 to C8 fatty acids, C6-ceramide (N-hexanoyl-D-sphingosine) was used as the substrate for its purification and characterization. The oyster acid ceramidase also catalyzed the synthesis of ceramide from a sphingosine and a fatty acid. For the synthesis, C16 and C18 fatty acids were the best precursors. The amino acid sequences of the two cyanogenbromide peptides derived from the purified ceramidase were found to have similarities to those of several neutral and alkaline ceramidases reported. The tight association of CGase and ceramidase may indicate that CGase in oyster hepatopancreas acts as a vehicle to release ceramide from GSLs for subsequent generation of sphingosines and fatty acids by ceramidase to serve as signaling factors and energy source.  相似文献   

3.
The ceramide turnover by lysosomal ceramidase in intact, living cells was investigated by loading radiolabeled sulfatide or sphingomyelin in situ on skin fibroblasts and lymphoid cells. The cells originated from normal individuals and from patients with acid ceramidase deficiency (Farber disease). While fibroblasts from individuals with Farber disease exhibited some impairment in the degradation of the ceramide produced by sulfatide hydrolysis, lymphoid cells from individuals with Farber disease metabolized the ceramide as readily as did normal cells, suggesting the existence in lymphoid cells of a nonlysosomal degradation pathway for the sulfatide-derived ceramide, In contrast, sphingomyelin loading in the presence of serum showed a considerably decreased turnover of ceramide in both fibroblasts and lymphoid cells from individuals with Farber disease. Further methodologic variation led to the use of LDL-associated radioactive sphingomyelin; LDL-association promoted the targeting of exogenous sphingomyelin to lysosomes. As a result, an almost complete deficiency of ceramide degradation was found in cells from severely affected patients with Farber disease. Our data with this novel method show that sphingomyelin loading of intact living cells is a simple, alternative means for determining ceramide degradation by lysosomal ceramidase and for diagnosing Farber disease.  相似文献   

4.
Increasing studies suggest that ceramides differing in acyl chain length and/or degree of unsaturation have distinct roles in mediating biological responses. However, still much remains unclear about regulation and role of distinct ceramide species in the immune response. Here, we demonstrate that alkaline ceramidase 3 (Acer3) mediates the immune response by regulating the levels of C18:1-ceramide in cells of the innate immune system and that Acer3 deficiency aggravates colitis in a murine model by augmenting the expression of pro-inflammatory cytokines in myeloid and colonic epithelial cells (CECs). According to the NCBI Gene Expression Omnibus (GEO) database, ACER3 is downregulated in immune cells in response to lipopolysaccharides (LPS), a potent inducer of the innate immune response. Consistent with these data, we demonstrated that LPS downregulated both Acer3 mRNA levels and its enzymatic activity while elevating C18:1-ceramide, a substrate of Acer3, in murine immune cells or CECs. Knocking out Acer3 enhanced the elevation of C18:1-ceramide and the expression of pro-inflammatory cytokines in immune cells and CECs in response to LPS challenge. Similar to Acer3 knockout, treatment with C18:1-ceramide, but not C18:0-ceramide, potentiated LPS-induced expression of pro-inflammatory cytokines in immune cells. In the mouse model of dextran sulfate sodium-induced colitis, Acer3 deficiency augmented colitis-associated elevation of colonic C18:1-ceramide and pro-inflammatory cytokines. Acer3 deficiency aggravated diarrhea, rectal bleeding, weight loss and mortality. Pathological analyses revealed that Acer3 deficiency augmented colonic shortening, immune cell infiltration, colonic epithelial damage and systemic inflammation. Acer3 deficiency also aggravated colonic dysplasia in a mouse model of colitis-associated colorectal cancer. Taken together, these results suggest that Acer3 has an important anti-inflammatory role by suppressing cellular or tissue C18:1-ceramide, a potent pro-inflammatory bioactive lipid and that dysregulation of ACER3 and C18:1-ceramide may contribute to the pathogenesis of inflammatory diseases including cancer.Ceramides are the central lipid in the metabolic network of sphingolipids, and are generated through the de novo, catabolic and salvage pathways.1 In the de novo pathway, ceramides are synthesized through multiple steps catalyzed sequentially by serine palmitoyltransferase (SPT), keto-dihydrosphingosine reductase, (dihydro)ceramide synthases (CerSs) and dihydroceramide desaturases. In the catabolic pathways, ceramides are derived from the hydrolysis of sphingomyelins by sphingomyelinases (SMases) or the hydrolysis of glycosphingolipids. In the salvage pathway, ceramides are synthesized from sphingosine (SPH) and fatty acyl-CoA by CerSs. As CerSs (CerS1-6) have distinct specificity toward acyl-CoA chain length and degree of unsaturation, ceramides with various acyl-chains are found in mammalian cells. Upon generation, ceramides can be hydrolyzed by five ceramidases encoded by five distinct genes (ASAH1, ASAH2, ACER1, ACER2 and ACER3). These ceramidases vary in pH optimum for catalytic activity, tissue distribution, cellular localization and substrate specificity,2 allowing for regulation of specific ceramides in a cell- or tissue-specific manner.Recent studies have implicated ceramides in regulating the innate immune response. Sakata et al.3 demonstrated that lipopolysaccharides (LPS), a potent inducer of the innate immune response, increases C16-ceramide by activating acid SMase and that inhibition of SMase attenuates LPS-induced production of pro-inflammatory cytokines in THP-1 macrophages. Andreyev et al.4 found that ceramides are increased by Toll-like receptor 4 (TLR4)-specific LPS in RAW 264.7 macrophages. Schilling et al.5 revealed that LPS and palmitic acid synergistically increase C16-ceramide in primary mouse peritoneal macrophages (PMs) by activating de novo biosynthesis of ceramides and that inhibiting the C16-ceramide increase attenuates LPS-induced production of TNF-α and IL-1β in PMs. A recent study found that LPS increases ceramides in Raw 264.7 macrophages through nuclear factor kappa B (NF-κB)-dependent upregulation of SPT long chain base subunit 2 Sptlc2, a regulator of SPT.6 These results suggest that ceramides mediate the immune response in part by enhancing the production of pro-inflammatory cytokines in innate immune cells.Emerging evidence suggests that dysregulation in the innate immune response in inflammatory bowel disease (IBD) contributes to the pathogenesis of the disease.7 Consistent with the role of ceramides in potentiating the innate immune response, several studies found that ceramides may have a role in the pathogenesis of IBD. Sakata et al.3 demonstrated that blocking the generation of ceramides with the SMase inhibitor hinders mouse colitis. Fischbeck et al.8 showed that increasing ceramides in the gut by supplying mice with dietary sphingomyelins, a precursor of ceramides, aggravates mouse colitis. These results suggest that increased levels of ceramides may contribute to the pathogenesis of IBD.Although the role of ceramides and their generating enzymes in the innate immune response have been well studied, much remains unclear about the role of ceramidases involved in the catabolism of ceramides in this biological response. In this study, we investigated the role of alkaline ceramidase 3 (ACER3)/Acer3 and its substrates in immune response. We demonstrated that Acer3 is downregulated, whereas its substrate, C18:1-ceramide, is upregulated in murine immune cells and colonic epithelial cells (CECs) during the innate immune response to LPS. Using Acer3 null mice (Acer3−/−) and their wild-type (Acer3+/+) littermates, we further discovered that the inverse regulation of Acer3 and C18:1-ceramide potentiates LPS-induced production of pro-inflammatory cytokines in innate immune cells. More importantly, we found that Acer3 deficiency aggravates dextran sulfate sodium (DSS)-induced colitis and colitis-associated colorectal cancer (CAC) in a murine model. These findings indicate that Acer3/ACER3 and C18:1-ceramide are novel modulators in the innate immune response and that their dysregulation may contribute to the pathogenesis of inflammatory diseases.  相似文献   

5.
6.
Dyshomeostasis of both ceramides and sphingosine-1-phosphate (S1P) in the brain has been implicated in aging-associated neurodegenerative disorders in humans. However, mechanisms that maintain the homeostasis of these bioactive sphingolipids in the brain remain unclear. Mouse alkaline ceramidase 3 (Acer3), which preferentially catalyzes the hydrolysis of C18:1-ceramide, a major unsaturated long-chain ceramide species in the brain, is upregulated with age in the mouse brain. Acer3 knockout causes an age-dependent accumulation of various ceramides and C18:1-monohexosylceramide and abolishes the age-related increase in the levels of sphingosine and S1P in the brain; thereby resulting in Purkinje cell degeneration in the cerebellum and deficits in motor coordination and balance. Our results indicate that Acer3 plays critically protective roles in controlling the homeostasis of various sphingolipids, including ceramides, sphingosine, S1P, and certain complex sphingolipids in the brain and protects Purkinje cells from premature degeneration.  相似文献   

7.
Triazine treatment of thylakoid membranes isolated from the primary leaves ofZea mays L. showed an 80% inhibition of photosystem (PS) 2 activity. No detectable change of PS 1 activity was found. The inhibited membranes showed a selective reduction of the most unsaturated linolenic acid (C18∶3) biosynthesis by about 15% coupled with a corresponding increase in stearic (C18∶0), oleic (C18∶1) and linoleic (C18∶2) acids. Thus the inhibition of electron transfer of PS 2 induced by triazine treatment was followed by lipid peroxidation and changes in the thylakoid membrane fluidity.  相似文献   

8.
3-Keto derivatives were prepared in good yield by the oxidative procedure with 2,3-dichloro-5,6-dicyanobenzoquinone from N-acetyl sphingosine, N-palmitoyl sphingosine, N-lignoceroyl sphingosine, and N-lignoceroyl psychosine. None of these 3-keto derivatives, except the one from N-acetyl sphingosine, have been previously reported. Ceramides were isolated from a calf brain and reacted with 2,3-dichloro-5, 6-dicyanobenzoquinone. Ceramides containing sphingosine (4-sphingenine) were converted to 3-keto derivative, while those containing dihydrosphingosine (sphinganine) remained intact under these conditions. The 3-keto ceramides were then separated from the ceramides containing dihydrosphingosine by preparative thin layer chromatography. Similarly cerebrosides from the same calf brain were oxidized and fractionated to 3-ketocerebrosides (from cerebrosides containing sphingosine) and unreacted cerebrosides (cerebrosides containing dihydrosphingosine). The fatty acid composition of these four sphingolipids were determined. Both the ceramides and the cerebrosides containing sphingosine had more unsaturated fatty acids than the corresponding dihydrosphingosine-containing compounds. The ratio of C16-C20 fatty acids to C22-C26 acids was higher in the ceramides containing sphingosine than in ceramides containing dihydrosphingosine, while the ratio was reversed in cerebrosides. The possible precursor-product relationship among these lipids is discussed.  相似文献   

9.
Novel ω-N-amino analogs of B13 (Class E) were designed, synthesized and tested as inhibitors of acid ceramidase (ACDase) and potential anticancer agents deprived of unwanted lysosomal destabilization and ACDase proteolytic degradation properties of LCL204 [Szulc, Z. M.; Mayroo, N.; Bai, A.; Bielawski, J.; Liu, X.; Norris, J. S.; Hannun, Y. A.; Bielawska, A. Bioorg. Med. Chem. 2008, 16, 1015].Representative analog LCL464, (1R,2R)-2-N-(12′-N,N-dimethylaminododecanoyl amino)-1-(4″-nitrophenyl)-1,3-propandiol, inhibited ACDase activity in vitro, with a similar potency as B13 but higher than LCL204. LCL464 caused an early inhibition of this enzyme at a cellular level corresponding to decrease of sphingosine and specific increase of C14- and C16-ceramide. LCL464 did not induce lysosomal destabilization nor degradation of ACDase, showed increased cell death demonstrating inherent anticancer activity in a wide range of different cancer cell lines, and induction of apoptosis via executioner caspases activation. LCL464 represents a novel structural lead as chemotherapeutic agent acting via the inhibition of ACDase.  相似文献   

10.
Acid ceramidase (N-acylsphingosine amidohydrolase) is the lysosomal enzyme required to hydrolyze the N-acyl linkage between the fatty acid and sphingosine moieties in ceramide. A deficiency of acid ceramidase activity results in the lipid storage disorder, Farber disease. This study reports a new assay method to detect acid ceramidase activity in vitro using Bodipy or lissamine rhodamine-conjugated ceramide (C12 ceramide; dodecanoylsphingosine). Using mouse kidney extracts as the source of acid ceramidase activity, this new method was compared with an assay using radioactive C12 ceramide (N-[(14)C]-dodecanoylsphingosine) as a substrate. The Bodipy C12 ceramide substrate provided data very similar to those of the radioactive substrate, but under the experimental conditions tested, it was significantly more sensitive. Using Bodipy C12 ceramide, femtomole quantities of the product, Bodipy dodecanoic acid, could be detected, providing an accurate measure of acid ceramidase activity as low as 0.1 pmol/mg protein/h. Acid ceramidase activities in skin fibroblasts and EBV-transformed lymphoblasts from Farber disease patients were around 7.8 and 10% of those in normal cells, respectively, confirming the specificity of this new assay method. Based on these results, we suggest that this fluorescence-based, high-performance liquid chromatographic technique is a reliable, rapid, and highly sensitive method to determine acid ceramidase activity, and that it could be useful wherever the in vitro detection of acid ceramidase activity is of importance.  相似文献   

11.
Three cytochrome P450 monooxygenase CYP52 gene family members were isolated from the sophorolipid-producing yeast Starmerella bombicola (former Candida bombicola), namely, CYP52E3, CYP52M1, and CYP52N1, and their open reading frames were cloned into the pYES2 vector for expression in Saccharomyces cerevisiae. The functions of the recombinant proteins were analyzed with a variety of alkane and fatty acid substrates using microsome proteins or a whole-cell system. CYP52M1 was found to oxidize C16 to C20 fatty acids preferentially. It converted oleic acid (C18:1) more efficiently than stearic acid (C18:0) and linoleic acid (C18:2) and much more effectively than α-linolenic acid (C18:3). No products were detected when C10 to C12 fatty acids were used as the substrates. Moreover, CYP52M1 hydroxylated fatty acids at their ω- and ω-1 positions. CYP52N1 oxidized C14 to C20 saturated and unsaturated fatty acids and preferentially oxidized palmitic acid, oleic acid, and linoleic acid. It only catalyzed ω-hydroxylation of fatty acids. Minor ω-hydroxylation activity against myristic acid, palmitic acid, palmitoleic acid, and oleic acid was shown for CYP52E3. Furthermore, the three P450s were coassayed with glucosyltransferase UGTA1. UGTA1 glycosylated all hydroxyl fatty acids generated by CYP52E3, CYP52M1, and CYP52N1. The transformation efficiency of fatty acids into glucolipids by CYP52M1/UGTA1 was much higher than those by CYP52N1/UGTA1 and CYP52E3/UGTA1. Taken together, CYP52M1 is demonstrated to be involved in the biosynthesis of sophorolipid, whereas CYP52E3 and CYP52N1 might be involved in alkane metabolism in S. bombicola but downstream of the initial oxidation steps.  相似文献   

12.
Acid ceramidase (N-acylsphingosine deacylase, EC 3.5.1.23; AC) is the lipid hydrolase responsible for the degradation of ceramide into sphingosine and free fatty acids within lysosomes. The enzymatic activity was first identified over four decades ago, and is deficient in the inherited lipid storage disorder, Farber Lipogranulomatosis (Farber disease). Importantly, AC not only hydrolyzes ceramide into sphingosine, but also can synthesize ceramide from sphingosine and free fatty acids in vitro and in situ. This “reverse” enzymatic activity occurs at a distinct pH from the hydrolysis (“forward”) reaction (6.0 vs. 4.5, respectively), suggesting that the enzyme may have diverse functions within cells dependent on its subcellular location and the local pH. Most information concerning the role of AC in human disease stems from work on Farber disease. This lipid storage disease is caused by mutations in the gene encoding AC, leading to a profound reduction in enzymatic activity. Recent studies have also shown that AC activity is aberrantly expressed in several human cancers, and that the enzyme may be a useful cancer drug target. For example, AC inhibitors have been used to slow the growth of cancer cells, alone or in combination with other established, anti-oncogenic treatments. Aberrant AC activity also has been described in Alzheimer's disease, and overexpression of AC may prevent insulin resistant (Type II) diabetes induced by free fatty acids. Current information concerning the biology of this enzyme and its role in human disease is reviewed within.  相似文献   

13.
Ceramidases catalyze hydrolysis of ceramides to generate sphingosine (SPH), which is phosphorylated to form sphingosine-1-phosphate (S1P). Ceramide, SPH, and S1P are bioactive lipids that mediate cell proliferation, differentiation, apoptosis, adhesion, and migration. Presently, 5 human ceramidases encoded by 5 distinct genes have been cloned: acid ceramidase (AC), neutral ceramidase (NC), alkaline ceramidase 1 (ACER1), alkaline ceramidase 2 (ACER2), and alkaline ceramidase 3 (ACER3). Each human ceramidase has a mouse counterpart. AC, NC, and ACER1-3 have maximal activities in acidic, neutral, and alkaline environments, respectively. ACER1-3 have similar protein sequences but no homology to AC and NC. AC and NC also have distinct protein sequences. The human AC (hAC) was implicated in Farber disease, and hAC may be important for cell survival. The mouse AC (mAC) is needed for early embryo survival. NC is protective against inflammatory cytokines, and the mouse NC (mNC) is required for the catabolism of ceramides in the digestive tract. ACER1 is critical in mediating cell differentiation by controlling the generation of SPH and S1P and that ACER2's role in cell proliferation and survival depends on its expression or the cell type in which it is found. Here, we discuss the role of each ceramidase in regulating cellular responses mediated by ceramides, SPH, and S1P.  相似文献   

14.
Ceramidases catalyze the cleavage of ceramides into sphingosine and fatty acids. Previously, we reported on the use of the RBM14 fluorogenic ceramide analogs to determine acidic ceramidase activity. In this work, we investigated the activity of other amidohydrolases on RBM14 compounds. Both bacterial and human purified neutral ceramidases (NCs), as well as ectopically expressed mouse neutral ceramidase hydrolyzed RBM14 with different selectivity, depending on the N-acyl chain length. On the other hand, microsomes from alkaline ceramidase (ACER)3 knockdown cells were less competent at hydrolyzing RBM14C12, RBM12C14, and RBM14C16 than controls, while microsomes from ACER2 and ACER3 overexpressing cells showed no activity toward the RBM14 substrates. Conversely, N-acylethanolamine-hydrolyzing acid amidase (NAAA) overexpressing cells hydrolyzed RBM14C14 and RBM14C16 at acidic pH. Overall, NC, ACER3, and, to a lesser extent, NAAA hydrolyze fluorogenic RBM14 compounds. Although the selectivity of the substrates toward ceramidases can be modulated by the length of the N-acyl chain, none of them was specific for a particular enzyme. Despite the lack of specificity, these substrates should prove useful in library screening programs aimed at identifying potent and selective inhibitors for NC and ACER3.  相似文献   

15.
Burkholderia multivorans causes opportunistic pulmonary infections in cystic fibrosis and immunocompromised patients. The purpose of the present study was to determine the nature of the phospholipids and their fatty acid constituents comprising the cell envelope membranes of strains isolated from three disparate sources. A conventional method for obtaining the readily extractable lipids fraction from bacteria was employed to obtain membrane lipids for thin-layer chromatographic and gas chromatography-mass spectrophotometric analyses. Major fatty acid components of the B. multivorans readily extractable lipid fractions included C16:0 (palmitic acid), C16:1 (palmitoleic acid), and C18:1 (oleic acid), while C14:0 (myristic acid), ΔC17:0 (methylene hexadecanoic acid), C18:0 (stearic acid), and ΔC19:0 (methylene octadecanoic acid) were present in lesser amounts. Fatty acid composition differed quantitatively among strains with regard to C16:0, C16:1, ΔC17:0, C18:1, and ΔC19:0 with the unsaturated:saturated fatty acid ratios being significantly less in a cystic fibrosis type strain than either environmental or chronic granulomatous disease strains. Phospholipids identified in all B. multivorans strains included lyso-phosphatidylethanolamine, phosphatidylglycerol, phosphatidylethanolamine, and diphosphatidylglycerol in similar ratios. These data support the conclusion that the cell envelope phospholipid profiles of disparate B. multivorans strains are similar, while their respective fatty acyl substituent profiles differ quantitatively under identical cultivation conditions.  相似文献   

16.
Triacylglycerol: sterol acyltransferase is present in roots of Sinapis alba seedlings. The enzyme is located predominantly in the cell membrane structures sedimenting at 300–16 000 g but can be solubilized by acetone treatment and buffer extraction. During gel filtration on Sephadex G-100 the acyltransferase activity was separated into two peaks corresponding to MW 1.8 × 1014 and MW ? 105, respectively. A number of natural 3β-hydroxysterols can be esterified by the solubilized acyltransferase. The rate of esterification is much higher for sterols containing a planar ring system. The number and position of double bonds, as well as the structure of the side chain at C- 17 of the sterol molecule, are of secondary importance. Triacylglycerols containing fatty acids C, C6-C22 can be utilized as acyl donors. Among triacylglycerols containing saturated fatty acids, tripalmitoylglycerol (C16:0) is the best acyl donor. For triacylglycerols containing C18-fatty acids the following sequence was observed: trioleoylglycerol (C18:1) > trilinoleoylglycerol (C18:2) > trilinolenoylglycerol (C18:3) > tristearoylglycerol (C18:0).  相似文献   

17.
Ceramide and the metabolites including ceramide-1-phosphate (C1P) and sphingosine are reported to regulate the release of arachidonic acid (AA) and/or phospholipase A2 (PLA2) activity in many cell types including lymphocytes. Recent studies established that C1P, a product of ceramide kinase, interacts directly with Ca2+ binding regions in the C2 domain of α type cytosolic PLA2 (cPLA2α), leading to translocation of the enzyme from the cytosol to the perinuclear region in cells. However, a precise mechanism for C1P-induced activation of cPLA2α has not been well elucidated; such as the phosphorylation signal caused by the extracellular signal-regulated kinases (ERK1/2) pathway, a downstream of the protein kinase C activation with 4β-phorbol myristate acetate (PMA), is required or not. In the present study, we showed that the increase in intracellular ceramide levels (exogenously added cell permeable ceramides and an inhibition of ceramidase by (1S,2R)-D-erythro-2-(N-myristoylamino)-1-phenyl-1-propanol and the increase in C1P formation by transfection with the vector for human ceramide kinase significantly enhanced the Ca2+ ionophore (A23187) -induced release of AA via cPLA2α's activation in CHO cells. Ceramides did not show additional effects on the release from the cells treated with the inhibitor of ceramidase. Ceramides and C2-C1P neither had effect on the intracellular mobilization of Ca2+ nor the phosphorylation of cPLA2α in cells. A23187/PMA-induced release of AA was enhanced by ceramides and C2-C1P and by expression of ceramide kinase. Our findings suggest that C1P is a stimulatory factor on cPLA2α that is independent of the Ca2+ signal and the PKC-ERK-mediated phosphorylation signal.  相似文献   

18.
《Insect Biochemistry》1989,19(8):767-774
The fatty acid content and composition of the house cricket Acheta domesticus have been investigated in entire insects at different developmental stages and in selected organs of male and female adults. We have also determined the fatty acid composition of the various lipid classes within extracts of the organs of adult female insects. Fatty acids were analysed by capillary gas chromatography or mass spectrometry as their methyl esters (FAMEs) after direct transesterification of insect material or separated lipid classes.The major esterified fatty acids in all extracts were palmitate (C16:0), stearate (C18:0), oleate (C18:1) and linoleate (C18:2). Levels of esterified fatty acid varied considerably between organs but the fatty acid compositions showed only small variations. The levels of polyunsaturated fatty acids of the C18 series were considerably higher in phospholipid fractions than in other lipid classes. Triacylglycerols formed the major lipid class in ovaries, fat-body and newly-laid eggs, whereas diacylglycerols and phospholipid predominate in the haemolymph. Triacylglycerols, phospholipids, diacylglycerols and free fatty acids were all found in significant amounts in the gut tissue.  相似文献   

19.
The effect of growth medium NaCl concentration on the fatty acid composition of phospholipids of 3 strains of Saccharomyces cerevisiae and 6 osmotolerant yeast strains was examined. The S. cerevisiae strains were characterized by a high content of palmitoleic (C16:1) acid and by having no polyunsaturated C18 acids, whereas the osmotolerant strains had a low content of C16:1 and a high proportion of polyenoic C18 acids. An increase of the NaCl concentration from 0% to 8% resulted in a decrease of the cellular phospholipid content on a dry-weight basis, for all strains but one of the osmotolerant strains. For the S. cerevisiae strains increased salinity produced a slight decrease of the proportion of C16 fatty acids with a concomitant increase of C18 acids, whereas the osmotolerant strains showed an increase of the relative content of oleic acid (C18:1) at the expense of the proportion of polyenoic C18 acids.  相似文献   

20.
Complex lipids of Rhodomicrobium vannielii   总被引:13,自引:12,他引:1       下载免费PDF全文
Eight components, seven of which contained phosphorus, were found in the phospholipid fraction of Rhodomicrobium vannielii. The major components were lipoamino acid (o-ornithine ester of phosphatidyl glycerol, 46.5%) and phosphatidyl choline (26.5%). The other six components were phosphatidyl glycerol (9.7%), bisphosphatidic acid (6.7%), phosphatidyl ethanolamine (4.5%), phosphatidic acid (1.8%), lysophosphatidyl glycerol-o-ornithine ester (3.2%), and N,N-ornithine amide of unidentified fatty acid (0.95%). Total phospholipid accounted for 4.2% of cell dry weight. The major fatty acid was vaccenic acid, C18:1, which accounted for approximately 90% of the total fatty acids of the complex lipid fraction. The other four fatty acids were C16:0 (6.25%), C18:0 (3.8%), C14:0 (0.7%), and C16:1 (0.35%). The sulfolipid content was 0.01% of the cell dry weight or 0.14 μmoles per g of dried cells, assuming that its fatty acid component is vaccenic acid. No steroids were detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号