首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
In the present article we review several postembedding cytochemical techniques using the colloidal gold marker. Owing to the high atomic number of gold, the colloidal gold particles are electron dense. They are spherical in shape and can be prepared in sizes from 1 to 25 nm, which renders this marker among the best for electron microscopy. In addition, because it can be bound to several molecules, this marker has the advantage of being extremely versatile. Combined to immunoglobulins or immunoglobulin-binding proteins (protein A), it has been applied successfully in immunocytochemistry. Colloidal gold particles 5–15 nm in size are excellent for postembedding cytochemistry. Particles of smaller size, such as 1 nm, must be silver enhanced to be visualized by transmission electron microscopy. We have elected to review the superiority of indirect immunocytochemical approaches using IgG-gold or protein A-gold (protein G-gold and protein AG-gold). Lectins or enzymes can be tagged with colloidal gold particles, and the corresponding lectin-gold and enzyme-gold techniques have specific advantages and great potential. Using an indirect digoxigenin-tagged nucleotide and an antidigoxigenin probe, colloidal gold technology can also be used for in situ hybridization at the electron microscope level. Affinity characteristics lie behind all cytochemical techniques and several molecules displaying high affinity properties can also be beneficial for colloidal gold electron microscopy cytochemistry. All of these techniques can be combined in various ways to produce multiple labelings of several binding sites on the same tissue section. Colloidal gold is particulate and can easily be counted; thus the cytochemical signal can be evaluated quantitatively, introducing further advantages to the use of the colloidal gold marker. Finally, several combinations and multiple step procedures have been designed to amplify the final signal which renders the techniques more sensitive. The approaches reviewed here have been applied successfully in different fields of cell and molecular biology, cell pathology, plant biology and pathology, microbiology and virology. The potential of the approaches is emphasized in addition to different ways to assess specificity, sensitivity and accuracy of results.  相似文献   

2.
We investigated the distribution of thrombospondin-specific binding sites and the uptake of thrombospondin-gold conjugates in cultured porcine endothelial cells by light and electron microscopy. Colloidal gold marker and silver enhancement techniques were applied for cytochemical detection of monomeric thrombospondin and fragments of thrombospondin. Thrombospondin binds to granular and fibrillar structures and to sites of cell-cell contact on the cell surface, as indicated by many proteoglycan-cuprolinic blue precipitates. Cell migration tracks on the culture dish bottom are most heavily stained. Labeling of intact thrombospondin and of proteolytic fragments of thrombospondin with colloidal gold followed by silver intensification enables one to detect its binding and uptake in endothelial cells. Binding to the cell surface and uptake of thrombospondin-gold particles was inhibited by heparin but not by hyaluronic acid or chondroitin sulfate. The heparin binding region at the N-terminal end of the thrombospondin molecule proved to be essential for cell surface binding. Gold-conjugated thrombospondin fragments devoid of the heparin binding region were not internalized. After 60 min incubation at 37 degrees C, thrombospondin-gold particles accumulated in the lysosomal compartment close to the nucleus. In the presence of monensin and ammonium chloride, vesicles in this area are swollen and the concentration of particulate marker is reduced. Binding and uptake of thrombospondin by vascular endothelial cells appears to require linkage of the heparin binding region of the thrombospondin molecule to coated pits and heparan sulfate-rich molecules as receptors. Colloidal gold conjugation of thrombospondin fragments proved to be useful for cytochemical characterization of molecular domains.  相似文献   

3.
Colloidal gold was used as a marker for the light microscopic detection of lymphocyte cell surface antigens with monoclonal antibodies. Suspensions of peripheral blood leukocytes were first incubated with monoclonal mouse antibodies and then with colloidal gold-labeled goat anti-mouse antibodies. The cells were fixed and cytocentrifuge preparations or smears were made. Granulocytes and monocytes were then labeled by the cytochemical staining of their endogenous peroxidase activity. Lymphocytes reacting with the monoclonal antibody had numerous dark granules around the surface membrane. With electron microscopy, these granules appeared as patches of gold particles. This immunogold staining method proved to be a reliable tool for the enumeration of T-lymphocyte subpopulations in peripheral blood. The results were almost identical to those obtained with immunofluorescence microscopy. The procedure can also be applied on small volumes of capillary blood. This constitutes a good microtechnique for the determination of lymphocyte subsets in children.  相似文献   

4.
A new method of preparing gold probes for multiple-labeling cytochemistry   总被引:153,自引:0,他引:153  
A new method is described for preparing colloidal gold particles in any size between approximately 3 and 17 nm for electron microscopy. The gold particles are homogeneous in size (homodisperse). When bound to various proteins (e.g. IgG and protein A), the complexes were stable for long periods and suitable for affinity cytochemistry. We demonstrated the usefulness of the new gold probes bound to protein A for multiple labeling in a current immunocytochemical study on receptor mediated transport of IgA in human duodenal crypt cells. Other gold-protein complexes were useful for studying macromolecular arrangements at high resolution.  相似文献   

5.
The receptor-mediated endocytosis pathway of colloidal gold labeled beta-very low density lipoprotein (beta-VLDL-Au) derived from patients with familial dysbetalipoproteinemia was analyzed at the ultrastructural level in macrophages. The results showed that beta-VLDL-Au complexes were specifically recognized by a cell surface receptor of the macrophages. beta-VLDL-Au particles once bound to the randomly distributed cell surface receptors clustered in coated pits and were taken up by coated vesicles. Subsequently, the beta-VLDL-Au particles passed through tubular structures and small endosomes before deposited into large electron lucent smooth surfaced endosomes. As revealed by ruthenium red and enzyme cytochemistry the endosomes appeared to be separated from the extracellular space and did not contain acid phosphatase. There were no clear signs of passage of beta-VLDL through the Golgi complex. The accumulation of many flocculated gold particles within Ac-Pase positive vesicles suggests that beta-VLDL once internalized by the macrophages is diverted into a degradative pathway. Incubation of beta-VLDL-loaded macrophages with the hydrophobic fluorescent dye nile red revealed numerous large fluorescent bodies within the cells indicating that the macrophages accumulate large amounts of lipid droplets with time. Additional studies large amounts of lipid droplets with time. Additional studies with native beta-VLDL in conjunction with postembedding immunocytochemical techniques were used to delineate further the intracellular pathway. Immunolabeling was carried out on thin sections of LR White embedded cells using affinity-purified polyclonal rabbit antibodies against apolipoprotein B with the protein A-gold or goat anti-rabbit IgG-gold technique. Indirect visualization of beta-VLDL by these immunocytochemical studies yielded results comparable to those with gold-labeled beta-VLDL. On the basis of both indirect immunocytochemical and direct cytochemical localization of beta-VLDL it is concluded that although colloidal gold labeling of beta-VLDL molecules unquestionably modifies their morphology, their function appears to be unaltered, at least with respect to the process of receptor-mediated endocytosis.  相似文献   

6.
Binding sites of Griffonia simplicifolia I-B4 isolectin (GS-I-B4), which recognizes terminal α-galactose residues of glycoconjugates, were examined in the juxtaluminal region of the rat vomeronasal sensory epithelium and its associated glands of the vomeronasal organ, using a lectin cytochemical technique. Lowicryl K4M-embedded ultra-thin sections, which were treated successively with biotinylated GS-I-B4 and streptavidin-conjugated 10 nm colloidal gold particles, were observed under a transmission electron microscope. Colloidal gold particles, which reflect the presence of terminal α-galactose-containing glycoconjugates, were present in vomeronasal receptor neurons in the sensory epithelium and secretory granules of acinar cells of associated glands of the epithelium. Quantitative analysis demonstrated that the density of colloidal gold particles associated with sensory cell microvilli that projected from dendritic endings of vomeronasal neurons was considerably higher than that of microvilli that projected from neighboring sustentacular cells. The same was true for the apical cytoplasms of these cells just below the microvilli. These results suggest that of the sensory microvilli and dendritic endings contained a much larger amount of the α-galactose-containing glycoconjugates, compared with those in sustentacular microvilli. Further, biochemical analyses demonstrated several vomeronasal organ-specific glycoproteins with terminal α-galactose.  相似文献   

7.
Colloidal gold labeling in conjunction with silver enhancement was investigated as a labeling technique for photoelectron microscopy (PEM). PEM uses UV-stimulated electron emission to image uncoated cell surfaces, and markers for cell surfaces need to be sufficiently photoemissive to be clearly visible against this background. Label contrast provided by 6 nm or 20 nm colloidal gold markers alone was compared to that provided by 6 nm markers after silver enhancement, using both direct and indirect labeling methods for fibronectin on human fibroblast cell surfaces. In all cases, details of the fibrillar fibronectin labeling distribution which were barely discernible before silver enhancement became highly visible against the cellular surface features. Two factors evidently contribute to the pronounced increase in label contrast with silver enhancement: (1) Increased particle size, which was documented by transmission electron microscopy, and (2) increased photoemission resulting from a silver coating on the enhanced gold markers, compared with the protein coating on the unenhanced gold markers. These data demonstrate that silver enhancement of colloidal gold labeling patterns in PEM images is a highly effective method for localization of specific sites on cell surfaces.  相似文献   

8.
A monospecific, affinity purified antibody was prepared against chicken erythrocyte alpha-spectrin. The antibody cross-reacted with only one high molecular weight polypeptide (235 kDa) from whole Acanthamoeba cells. The localization of alpha-spectrin-related antigen in Acanthamoeba cells was examined using immunofluorescence and postembedding cytochemical techniques. Three patterns of distribution of alpha-spectrin immunoanalog were distinguished: as submembranous layer, cytoplasmic aggregates and uniform dispersion through the cytoplasm. Immunoelectron microscopic studies showed that the colloidal gold label was located in the cytoplasm in the vicinity of the plasma membrane. The gold particles were also aggregated around unidentified cytoplasmic filamentous structures. The presence of spectrin-related protein in protozoan cells of Acanthamoeba is in accordance with previous assumptions of the widespread occurrence of spectrin-related proteins. The heterogenous distribution of the immunoanalog of alpha-spectrin protein in Acanthamoeba cells is discussed.  相似文献   

9.
Summary Cationic colloidal gold (CCG) was used to characterize acidic glycoconjugates in semithin and ultrathin sections of rat large intestine and salivary glands embedded in hydrophilic Lowicryl K4M resin. It was prepared from poly-l-lysine and 10 nm colloidal gold solution. The staining of CCG in semithin sections was amplified after photochemical silver reaction using silver acetate as a silver ion donor and examined under bright-field and epi-illumination microscopy. CCG adjusted to various pH levels was tested on various rat tissues whose histochemical characteristics with regard to acidic glycoconjugates are well known. At pH 2.5 CCG labelled tissues containing sialylated and sulphated acidic glycoconjugates such as the apical cell surface, mucous cells in the distal and proximal colon, and acinar cells of the sublingual gland. In contrast, CCG at pH 1.0 labelled tissues containing sulphated acidic glycoconjugates such as mucous cells in the upper crypt of the proximal colon and mucous cells in the whole crypt of the distal colon. This specificity of CCG was verified by the alteration of CCG staining following several types of cytochemical pretreatment. These results were further confirmed by electron microscopy. CCG staining is thus a useful postembedding procedure for the characterization of acidic glycoconjugates at both the light- and electron-microscopic levels.  相似文献   

10.
L Scopsi  L I Larsson 《Medical biology》1986,64(2-3):139-145
Colloidal gold particles are the markers of choice for ultrastructural localization of antigens. By reducing gold chloride with tannic acid and trisodium citrate, a broad range of narrowly determined particle sizes can be obtained. Such particles can easily be coupled to a number of proteins and the resulting conjugates are conveniently purified on a gel-chromatography column. Their application in light microscopy requires an amplification step with a silver physical developer. Silver-intensified colloidal gold probes can advantageously be used for immunostaining of cryostat, paraffin and plastic sections. Moreover, permeabilized cultured cells and whole-mount preparations can also be stained with gold-silver techniques. Silver intensification does not affect reactivity of a number of tissue antigens, thus permitting double staining combinations with immunoperoxidase or immunofluorescence methods.  相似文献   

11.
Electron microscope examination of negatively stained preparations continues to be the method of choice for the diagnosis of virus particles although in some instances an immunological test is necessary. Colloidal gold immunocytochemical probes are becoming increasingly popular for electron microscopy and their suitability for the identification of virus particles is assessed.Virus particles were immunolabelled in situ on plastic/carbon coated electron microscope grids with specific antibody and colloidal gold probes. The labelling obtained was specific, definite and with very little background. The technique is very sensitive, very quick, and since a minimum of preparation is needed it appears to possess considerable potential for virus diagnosis.  相似文献   

12.
Agarose-gelatin microspherules about 0.5 micron or larger are prepared with emulsification of 4% agarose-gelatin sol containing 0.2 M N-octylglucoside in an organic phase composed of cyclohexane, egg lecithin, Span 80, and ethanol, followed by extraction of lipophilic components with cyclohexane and ether. Colloidal gold particles are then introduced into microspherules using gold chloride reacting at room temperature with tannic acid in a specified concentration range. After they have been coated with bovine serum albumin or mouse IgG, colloidal gold-labeled microspherules can be readily phagocytized by mouse L-cells and P388 cells after incubation for several hours. In addition to their use as a novel marker for phagocytosis, we discuss other potential uses for these colloidal gold-labeled microspherules.  相似文献   

13.
A cytochemical technique for demonstration of neomycin binding sites by electron microscopy was developed and applied to Escherichia coli. Neomycin was conjugated chemically with bovine serum albumin (BSA). Colloidal gold was coated with the conjugated neomycin-BSA. The neomycin-BSA-gold was applied to thin sections of Epon-embedded E. coli and examined. Gold particles were observed on the outer membrane and the cytoplasmic membrane of E. coli. It was probably the ribosomes that were being labeled in the cytoplasm. Different cytochemical controls, including a number of inhibition tests and the use of BSA-gold, proved the specificity of this cytochemical technique and provided the biochemical significance of the observations.  相似文献   

14.
Summary A monospecific, affinity purified antibody was prepared against chicken erythrocyte alpha-spectrin. The antibody cross-reacted with only one high molecular weight polypeptide (235 kDa) from whole Acanthamoeba cells. The localization of alpha-spectrin-related antigen in Acanthamoeba cells was examined using immunofluorescence and postembedding cytochemical techniques. Three patterns of distribution of alpha-spectrin immunoanalog were distinguished: as submembraneous layer, cytoplasmic aggregates and uniform dispersion through the cytoplasm. Immunoelectron microscopic studies showed that the colloidal gold label was located in the cytoplasm in the vicinity of the plasma membrane. The gold particles were also aggregated around unidentified cytoplasmic filamentous structures. The presence of spectrin-related protein in protozoan cells of Acanthamoeba is in accordance with previous assumptions of the widespread occurrence of spectrin-related proteins. The heterogenous distribution of the immunoanalog of alpha-spectrin protein in Acanthamoeba cells is discussed.  相似文献   

15.
High-voltage (15-30 kV) field emission scanning electron microscopy (FESEM) was used to evaluate the effects of gold particle size and protein concentration on the formation of protein-gold complexes. Six colloidal gold sols were prepared, ranging in diameter from 7.6 to 39.8 nm. The minimal protecting amounts (m.p.a.) of protein A and goat anti-rabbit antibody (GAR) were experimentally determined. Gold particles were conjugated at the m.p.a., one half the m.p.a., and ten times the m.p.a. for both proteins, and protein-gold complexes prepared for FESEM. The smallest colloidal gold particles required the most protein per milliliter of gold suspension for stabilization. Transmission electron microscopy was found to be the preferred method for accurate sizing of gold particles, whereas FESEM of protein-gold complexes permitted visualization of a protein halo around a spherical gold core. Protein halo width varied significantly with changes in gold particle size. Measurements of protein halos indicated that conjugation with the m.p.a. of protein A resulted in the thickest protein layers for all gold sizes. GAR conjugation with the m.p.a. again produced the thickest protein layers. However, GAR halos were significantly smaller than those obtained with protein A conjugation. The proteins used showed similar adsorption patterns for the larger gold particles. For smaller gold particles, proteins may act differently, and these complexes should be further characterized by low-voltage FESEM.  相似文献   

16.
A preembedding immunogold staining (IGS) procedure was developed to identify beta-endorphin/adrenocorticotropic hormone immunoreactive neurons at the light and electron microscopic levels. Colchicine-treated rats were perfused with Nakane's periodate-lysine-paraformaldehyde fixative. Vibratome sections were incubated in primary antisera followed by goat anti-rabbit immunoglobulin G coupled to 16 nm colloidal gold, and, in some cases, rabbit immunoglobulin G coupled to gold. The appearance to pink to light red perikarya, corresponding to colloidal gold deposition at antigenic sites, was monitored under the light microscope. Positive cell bodies in the arcuate region sometimes extended lateral to the nucleus. Only proximal portions of neuronal processes were stained. At the ultrastructural level, colloidal gold labeled the periphery of 90-110 nm dense neurosecretory granules in the perikaryal cytoplasm and a few proximal axons. Clusters of gold particles, appearing free in the neuroplasm, actually labeled secretory granules in adjacent thin sections. Granules associated with the Golgi apparatus were not stained. Colloidal gold labeling of mature beta-endorphin granules, but not progranules, in rat hypothalamic neurons was confirmed using the peroxidase-antiperoxidase technique. The results correlate well with data on the intracellular processing of pro-opiomelanocortin in pituitary cells and prepropressophysin in the paraventricular nucleus. These data demonstrate the first application of the preembedding colloidal gold staining method for the identification of intracellular antigens within the central nervous system. The IGS method provides a definitive marker for single or double labeling of nervous tissue at both the light and electron microscopic levels.  相似文献   

17.
Colloidal gold particles have multiple uses as three-dimensional atomic force microscopy imaging standards because they are incompressible, monodisperse, and spherical. The spherical nature of the particles can be exploited to characterize scanning tip geometry. As uniform spheres, colloidal gold particles may be used to calibrate the vertical dimensions of atomic force microscopy at the nanometer level. The monodisperse and incompressible nature of the gold can be used to characterize the vertical dimensions of coadsorbed biomolecules. Simultaneous measurements of gold with tobacco mosaic virus show that, at the same applied vertical force, the tobacco mosaic virus is undamaged by blunt tips but is compressed or disintegrated under sharper scanning styli, suggesting that specimen degradation is partly a pressure-dependent effect.  相似文献   

18.
Summary Video-enhanced microscopy allows the detection and tracking of individual colloidal gold particles. The analysis of immunogold reactions can also be conducted as a function of time and thus allows the study of dynamic events in living cells. The direct visualization in real time is reported of the reaction of immunogold particles with a surface antigen. This time-resolved immunocytochemistry was achieved by continuous observation of living cells infected with a virus (respiratory syncytial virus) following their incubation with colloidal gold (30 nm) coated with antiviral antibodies. The progress of the immunoreaction was visualized as a sequential deposition of individual gold granules on the viral particles until saturation was reached after 60 min. Binding of colloidal gold was an irreversible event as no elution or dislocation of surface-bound granules took place. Comparative imaging of colloidal gold particles by electron microscopy and by video microscopy demonstrated that the video-imaged immunoreactions represented events involving single gold particles; their signal was sometimes clearly enhanced by secondary depositions taking place in close proximity, i.e. at a distance below the lateral resolution of the light microscope. Our experiments demonstrate that video-enhanced microscopy provides a powerful tool for studying antibody-antigen reactions with a high spatial and temporal resolution.  相似文献   

19.
Video-enhanced microscopy allows the detection and tracking of individual colloidal gold particles. The analysis of immunogold reactions can also be conducted as a function of time and thus allows the study of dynamic events in living cells. The direct visualization in real time is reported of the reaction of immunogold particles with a surface antigen. This time-resolved immunocytochemistry was achieved by continuous observation of living cells infected with a virus (respiratory syncytial virus) following their incubation with colloidal gold (30 nm) coated with antiviral antibodies. The progress of the immunoreaction was visualized as a sequential deposition of individual gold granules on the viral particles until saturation was reached after 60 min. Binding of colloidal gold was an irreversible event as no elution or dislocation of surface-bound granules took place. Comparative imaging of colloidal gold particles by electron microscopy and by video microscopy demonstrated that the video-imaged immunoreactions represented events involving single gold particles; their signal was sometimes clearly enhanced by secondary depositions taking place in close proximity, i.e. at a distance below the lateral resolution of the light microscope. Our experiments demonstrate that video-enhanced microscopy provides a powerful tool for studying antibody-antigen reactions with a high spatial and temporal resolution.  相似文献   

20.
We used the immunogold-silver staining method (IGSS) for detection of lymphocyte cell surface antigens with monoclonal antibodies in light and electron microscopy and compared this procedure with the immunogold staining method. Two different sizes of colloidal gold particles (5 nm and 15 nm) were used in this study. Immunolabeling on cell surfaces was visualized as fine granules only by IGSS in light microscopy. The labeling density (silver-gold complexes/cell) and diameters of silver-enhanced gold particles on cell surfaces were examined by electron microscopy. Labeling density was influenced not by the enhancement time of the physical developer but by the size of the gold particles. However, the development of shells of silver-enhanced gold particles correlated with the enhancement time of the physical developer rather than the size of the colloidal gold particles. Five-nm gold particles enhanced with the physical developer for 3 min were considered optimal for this IGSS method because of reduced background staining and high specific staining in the cell suspensions in sheep lymph. Moreover, this method may make it possible to show the ultrastructure of identical positive cells detected in 1-micron sections counterstained with toluidine blue by electron microscopy, in addition to the percentage of positive cells by light microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号