首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA mismatch repair (MMR) greatly contributes to genome integrity via the correction of mismatched bases that are mainly generated by replication errors. Postreplicative MMR excises a relatively long tract of error-containing single-stranded DNA. MutL is a widely conserved nicking endonuclease that directs the excision reaction to the error-containing strand of the duplex by specifically nicking the daughter strand. Because MutL apparently exhibits nonspecific nicking endonuclease activity in vitro, the regulatory mechanism of MutL has been argued. Recent studies suggest ATP-dependent conformational and functional changes of MutL, indicating that the regulatory mechanism involves the ATP binding and hydrolysis cycle. In this study, we investigated the effect of ATP binding on the structure of MutL. First, a cross-linking experiment confirmed that the N-terminal ATPase domain physically interacts with the C-terminal endonuclease domain. Next, hydrogen/deuterium exchange mass spectrometry clarified that the binding of ATP to the N-terminal domain induces local structural changes at the catalytic sites of MutL C-terminal domain. Finally, on the basis of the results of the hydrogen/deuterium exchange experiment, we successfully identified novel regions essential for the endonuclease activity of MutL. The results clearly show that ATP modulates the nicking endonuclease activity of MutL via structural rearrangements of the catalytic site. In addition, several Lynch syndrome-related mutations in human MutL homolog are located in the position corresponding to the newly identified catalytic region. Our data contribute toward understanding the relationship between mutations in MutL homolog and human disease.  相似文献   

2.
DNA mismatch repair (MMR) is responsible for correcting replication errors. MutLα, one of the main players in MMR, has been recently shown to harbor an endonuclease/metal-binding activity, which is important for its function in vivo. This endonuclease activity has been confined to the C-terminal domain of the hPMS2 subunit of the MutLα heterodimer. In this work, we identify a striking sequence-structure similarity of hPMS2 to the metal-binding/dimerization domain of the iron-dependent repressor protein family and present a structural model of the metal-binding domain of MutLα. According to our model, this domain of MutLα comprises at least three highly conserved sequence motifs, which are also present in most MutL homologs from bacteria that do not rely on the endonuclease activity of MutH for strand discrimination. Furthermore, based on our structural model, we predict that MutLα is a zinc ion binding protein and confirm this prediction by way of biochemical analysis of zinc ion binding using the full-length and C-terminal domain of MutLα. Finally, we demonstrate that the conserved residues of the metal ion binding domain are crucial for MMR activity of MutLα in vitro.  相似文献   

3.
We have purified the MutL protein from Rhodobacter sphaeroides mismatch repair system (rsMutL) for the first time. rsMutL demonstrated endonuclease activity in vitro, as predicted by bioinformatics analysis. Based on the alignment of 1483 sequences of bacterial MutL homologs with presumed endonuclease activity, conserved functional motifs and amino acid residues in the rsMutL sequence were identified: five motifs comprising the catalytic site responsible for DNA cleavage were found in the C–terminal domain; seven conserved motifs involved in ATP binding and hydrolysis and specific to the GHKL family of ATPases were found in the N–terminal domain. rsMutL demonstrated the highest activity in the presence of Mn2+. The extent of plasmid DNA hydrolysis declined in the row Mn2+ > Co2+ > Mg2+ > Cd2+; Ni2+ and Ca2+ did not activate rsMutL. Divalent zinc ions inhibited rsMutL endonuclease activity in the presence of Mn2+ excess. ATP also suppressed plasmid DNA hydrolysis by rsMutL. Analysis of amino acid sequences and biochemical properties of five studied bacterial MutL homologs with endonuclease activity revealed that rsMutL resembles the MutL proteins from Neisseria gonorrhoeae and Pseudomonas aeruginosa.  相似文献   

4.
Mismatch Repair System corrects mutations arising from DNA replication that escape from DNA polymerase proofreading activity. This system consists of three main proteins, MutS-L-H, responsible for lesion recognition and repair. MutL is a member of GHKL ATPase family and its ATPase cycle has been proposed to modulate MutL activity during the repair process. Pseudomonas aeruginosa MutL (PaMutL) contains an N-terminal (NTD) ATPase domain connected by a linker to a C-terminal (CTD) dimerization domain that possesses metal ion-dependent endonuclease activity. With the aim to identify characteristics that allow the PaMutL NTD allosteric control of CTD endonuclease activity, we used an in silico and experimental approach to determine the interaction surfaces of P. aeruginosa NTD (PaNTD), and compared it with the well characterized Escherichia coli MutL NTD (EcNTD). Molecular dynamics simulations of PaNTD and EcNTD bound to or free of adenosine nucleotides showed that a significant difference exists between the behavior of the EcNTD and PaNTD dimerization interface, particularly in the ATP lid. Structure based simulations of MutL homologues with endonuclease activity were performed that allowed an insight of the dimerization interface behavior in this family of proteins. Our experimental results show that, unlike EcNTD, PaNTD is dimeric in presence of ADP. Simulations in mixed solvent allowed us to identify the PaNTD putative DNA binding patch and a putative interaction patch located opposite to the dimerization face. Structure based simulations of PaNTD dimer in presence of ADP or ATP suggest that nucleotide binding could differentially modulate PaNTD protein-protein interactions. Far western assays performed in presence of ADP or ATP are in agreement with our in silico analysis.  相似文献   

5.
The Escherichia coli MutS and MutL proteins have been conserved throughout evolution, although their combined functions in mismatch repair (MMR) are poorly understood. We have used biochemical and genetic studies to ascertain a physiologically relevant mechanism for MMR. The MutS protein functions as a regional lesion sensor. ADP-bound MutS specifically recognizes a mismatch. Repetitive rounds of mismatch-provoked ADP-->ATP exchange results in the loading of multiple MutS hydrolysis-independent sliding clamps onto the adjoining duplex DNA. MutL can only associate with ATP-bound MutS sliding clamps. Interaction of the MutS-MutL sliding clamp complex with MutH triggers ATP binding by MutL that enhances the endonuclease activity of MutH. Additionally, MutL promotes ATP binding-independent turnover of idle MutS sliding clamps. These results support a model of MMR that relies on two dynamic and redundant ATP-regulated molecular switches.  相似文献   

6.
The DNA binding properties of the mismatch repair protein MutL and their importance in the repair process have been controversial for nearly two decades. We have addressed this issue using a point mutant of MutL (MutL-R266E). The biochemical and genetic data suggest that DNA binding by MutL is required for dam methylation-directed mismatch repair. We demonstrate that purified MutL-R266E retains wild-type biochemical properties that do not depend on DNA binding, such as basal ATP hydrolysis in the absence of DNA and the ability to interact with other mismatch repair proteins. However, purified MutL-R266E binds DNA poorly in vitro as compared with MutL, and consistent with this observation, its DNA-dependent biochemical activities, like DNA-stimulated ATP hydrolysis and helicase II stimulation, are severely compromised. In addition, there is a modest effect on stimulation of MutH-catalyzed nicking. Finally, genetic assays show that MutL-R266E has a strong mutator phenotype, demonstrating that the mutant is unable to function in dam methylation-directed mismatch repair in vivo.  相似文献   

7.
Mismatch repair is a highly conserved pathway responsible for correcting DNA polymerase errors incorporated during genome replication. MutL is a mismatch repair protein known to coordinate several steps in repair that ultimately results in strand removal following mismatch identification by MutS. MutL homologs from bacteria to humans contain well-conserved N-terminal and C-terminal domains. To understand the contribution of the MutL N-terminal domain to mismatch repair, we analyzed 14 different missense mutations in Bacillus subtilis MutL that were conserved with missense mutations identified in the human MutL homolog MLH1 from patients with hereditary nonpolyposis colorectal cancer (HNPCC). We characterized missense mutations in or near motifs important for ATP binding, ATPase activity, and DNA binding. We found that 13 of the 14 missense mutations conferred a substantial defect to mismatch repair in vivo, while three mutant alleles showed a dominant negative increase in mutation frequency to wild-type mutL. We performed immunoblot analysis to determine the relative stability of each mutant protein in vivo and found that, although most accumulated, several mutant proteins failed to maintain wild-type levels, suggesting defects in protein stability. The remaining missense mutations located in areas of the protein important for DNA binding, ATP binding, and ATPase activities of MutL compromised repair in vivo. Our results define functional residues in the N-terminal domain of B. subtilis MutL that are critical for mismatch repair in vivo.  相似文献   

8.
DNA MMR (mismatch repair) is an excision repair system that removes mismatched bases generated primarily by failure of the 3'-5' proofreading activity associated with replicative DNA polymerases. MutL proteins homologous to human PMS2 are the endonucleases that introduce the entry point of the excision reaction. Deficiency in PMS2 function is one of the major etiologies of hereditary non-polyposis colorectal cancers in humans. Although recent studies revealed that the CTD (C-terminal domain) of MutL harbours weak endonuclease activity, the regulatory mechanism of this activity remains unknown. In this paper, we characterize in detail the CTD and NTD (N-terminal domain) of aqMutL (Aquifex aeolicus MutL). On the one hand, CTD existed as a dimer in solution and showed weak DNA-binding and Mn2+-dependent endonuclease activities. On the other hand, NTD was monomeric and exhibited a relatively strong DNA-binding activity. It was also clarified that NTD promotes the endonuclease activity of CTD. NTD-mediated activation of CTD was abolished by depletion of the zinc-ion from the reaction mixture or by the substitution of the zinc-binding cysteine residue in CTD with an alanine. On the basis of these results, we propose a model for the intramolecular regulatory mechanism of MutL endonuclease activity.  相似文献   

9.
Structure and function of mismatch repair proteins   总被引:13,自引:0,他引:13  
Yang W 《Mutation research》2000,460(3-4):245-256
DNA mismatch repair is required for maintaining genomic stability and is highly conserved from prokaryotes to eukaryotes. Errors made during DNA replication, such as deletions, insertions and mismatched basepairs, are substrates for mismatch repair. Mismatch repair is strand-specific and targets only the newly synthesized daughter strand. To initiate mismatch repair in Escherichia coli, three proteins are essential, MutS, for mismatch recognition, MutH, for introduction of a nick in the target strand, and MutL, for mediating the interactions between MutH and MutS. Homologues of MutS and MutL important for mismatch repair have been found in nearly all organisms. Mutations in MutS and MutL homologues have been linked to increased cancer susceptibility in both mice and humans. Here, we review the crystal structures of the MutH endonuclease, a conserved ATPase fragment of MutL (LN40), and complexes of LN40 with various nucleotides. Based on the crystal structure, the active site of MutH has been identified and an evolutionary relationship between MutH and type II restriction endonucleases established. Recent crystallographic and biochemical studies have revealed that MutL operates as a molecular switch with its interactions with MutH and MutS regulated by ATP binding and hydrolysis. These crystal structures also shed light on the general mechanism of mismatch repair and the roles of Mut proteins in preventing mutagenesis.  相似文献   

10.
DNA mismatch repair (MMR) and very-short patch (VSP) repair are two pathways involved in the repair of T:G mismatches. To learn about competition and cooperation between these two repair pathways, we analyzed the physical and functional interaction between MutL and Vsr using biophysical and biochemical methods. Analytical ultracentrifugation reveals a nucleotide-dependent interaction between Vsr and the N-terminal domain of MutL. Using chemical crosslinking, we mapped the interaction site of MutL for Vsr to a region between the N-terminal domains similar to that described before for the interaction between MutL and the strand discrimination endonuclease MutH of the MMR system. Competition between MutH and Vsr for binding to MutL resulted in inhibition of the mismatch-provoked MutS- and MutL-dependent activation of MutH, which explains the mutagenic effect of Vsr overexpression. Cooperation between MMR and VSP repair was demonstrated by the stimulation of the Vsr endonuclease in a MutS-, MutL- and ATP-hydrolysis-dependent manner, in agreement with the enhancement of VSP repair by MutS and MutL in vivo. These data suggest a mobile MutS–MutL complex in MMR signalling, that leaves the DNA mismatch prior to, or at the time of, activation of downstream effector molecules such as Vsr or MutH.  相似文献   

11.
MutLα is a key component of the DNA mismatch repair system in eukaryotes. The DNA mismatch repair system has several genetic stabilization functions. Of these functions, DNA mismatch repair is the major one. The loss of MutLα abolishes DNA mismatch repair, thereby predisposing humans to cancer. MutLα has an endonuclease activity that is required for DNA mismatch repair. The endonuclease activity of MutLα depends on the DQHA(X)2E(X)4E motif which is a part of the active site of the nuclease. This motif is also present in many bacterial MutL and eukaryotic MutLγ proteins, DNA mismatch repair system factors that are homologous to MutLα. Recent studies have shown that yeast MutLγ and several MutL proteins containing the DQHA(X)2E(X)4E motif possess endonuclease activities. Here, we review the endonuclease activities of MutLα and its homologs in the context of DNA mismatch repair.  相似文献   

12.
Mismatch repair corrects errors that have escaped polymerase proofreading enhancing replication fidelity by at least two orders of magnitude. The β and PCNA sliding clamps increase the polymerase processivity during DNA replication and are important at several stages of mismatch repair. Both MutS and MutL, the two proteins that initiate the mismatch repair response, interact with β. Binding of MutS to β is important to recruit MutS and MutL to foci. Moreover, the endonuclease activity of human and yeast MutLα is stimulated by PCNA. However, the concrete functions of the processivity clamp in the repair steps preceding DNA resynthesis remain obscure. Here, we demonstrate that the C-terminal domain of MutL encompasses a bona fide β-binding motif that mediates a weak, yet specific, interaction between the two proteins. Mutation of this conserved motif correlates with defects in mismatch repair, demonstrating that the direct interaction with β is important for MutL function. The interaction between the C-terminal domain of MutL and β is conserved in both Bacillus subtilis and Escherichia coli, but the repair defects associated with mutation of this β-binding motif are more severe in the former, suggesting that this interaction may have a more prominent role in methyl-independent than methyl-directed mismatch repair systems. Together with previously published data, our work strongly suggests that β may stimulate the endonuclease activity of MutL through its direct interaction with the C-terminal domain of MutL.  相似文献   

13.
MutL homologs belong to a family of proteins that share a conserved ATP binding site. We demonstrate that amino-terminal domains of the yeast MutL homologs Mlh1 and Pms1 required for DNA mismatch repair both possess independent, intrinsic ATPase activities. Amino acid substitutions in the conserved ATP binding sites concomitantly reduce ATP binding, ATP hydrolysis, and DNA mismatch repair in vivo. The ATPase activities are weak, consistent with the hypothesis that ATP binding is primarily responsible for modulating interactions with other MMR components. Three approaches, ATP hydrolysis assays, limited proteolysis protection, and equilibrium dialysis, provide evidence that the amino-terminal domain of Mlh1 binds ATP with >10-fold higher affinity than does the amino-terminal domain of Pms1. This is consistent with a model wherein ATP may first bind to Mlh1, resulting in events that permit ATP binding to Pms1 and later steps in DNA mismatch repair.  相似文献   

14.
The mismatch repair proteins, MutS and MutL, interact in a DNA mismatch and ATP-dependent manner to activate downstream events in repair. Here, we assess the role of ATP binding and hydrolysis in mismatch recognition by MutS and the formation of a ternary complex involving MutS and MutL bound to a mismatched DNA. We show that ATP reduces the affinity of MutS for mismatched DNA and that the modulation of DNA binding affinity by nucleotide is even more pronounced for MutS E694A, a protein that binds ATP but is defective for ATP hydrolysis. Despite the ATP hydrolysis defect, E694A, like WT MutS, undergoes rapid, ATP-dependent dissociation from a DNA mismatch. Furthermore, MutS E694A retains the ability to interact with MutL on mismatched DNA. The recruitment of MutL to a mismatched DNA by MutS is also observed for two mutant MutL proteins, E29A, defective for ATP hydrolysis, and R266A, defective for DNA binding. These results suggest that ATP binding in the absence of hydrolysis is sufficient to trigger formation of a MutS sliding clamp. However, recruitment of MutL results in the formation of a dynamic ternary complex that we propose is the intermediate that signals subsequent repair steps requiring ATP hydrolysis.  相似文献   

15.
Exonuclease X is a 3′-5′ distributive exonuclease that functions in DNA recombination and repair. It undergoes multiple rounds of binding, hydrolysis, and release to degrade long substrate molecules and thus is very inefficient. In order to identify a cofactor that elevates the excision activity of ExoX, we screened many proteins involved in repair and recombination. We observed that MutL greatly promoted the exonuclease activity of ExoX, and then verified the interaction between MutL and ExoX using SPR and Far-Western analysis. This promotion is independent of ATP and the DNA-binding activity of MutL. We constructed two deletion mutants to analyze this interaction and its regulation of ExoX activity, and found that this functional interaction with ExoX is mainly due to ionic interactions with the N-terminus of MutL. This adds a new role to MutL and gives a clue to MutL’s possible regulation on other DnaQ family exonuclease members.  相似文献   

16.
The MutH protein, which is part of the Dam-directed mismatch repair system of Escherichia coli, introduces nicks in the unmethylated strand of a hemi-methylated DNA duplex. The latent endonuclease activity of MutH is activated by interaction with MutL, another member of the repair system. The crystal structure of MutH suggested that the active site residues include Asp70, Glu77 and Lys79, which are located at the bottom of a cleft where DNA binding probably occurs. We mutated these residues to alanines and found that the mutant proteins were unable to complement a chromosomal mutH deletion. The purified mutant proteins were able to bind to DNA with a hemi-methylated GATC sequence but had no detectable endonuclease activity with or without MutL. Although the data are consistent with the prediction of a catalytic role for Asp70, Glu77 and Lys79, it cannot be excluded that they are also involved in binding to MutL.  相似文献   

17.
Ban C  Junop M  Yang W 《Cell》1999,97(1):85-97
The MutL DNA mismatch repair protein has recently been shown to be an ATPase and to belong to an emerging ATPase superfamily that includes DNA topoisomerase II and Hsp90. We report here the crystal structures of a 40 kDa ATPase fragment of E. coli MutL (LN40) complexed with a substrate analog, ADPnP, and with product ADP. More than 60 residues that are disordered in the apoprotein structure become ordered and contribute to both ADPnP binding and dimerization of LN40. Hydrolysis of ATP, signified by subsequent release of the gamma-phosphate, releases two key loops and leads to dissociation of the LN40 dimer. Dimerization of the LN40 region is required for and is the rate-limiting step in ATP hydrolysis by MutL. The ATPase activity of MutL is stimulated by DNA and likely acts as a switch to coordinate DNA mismatch repair.  相似文献   

18.
Saccharomyces cerevisiae MutL homologues Mlh1p and Pms1p form a heterodimer, termed MutLalpha, that is required for DNA mismatch repair after mismatch binding by MutS homologues. Recent sequence and structural studies have placed the NH(2) termini of MutL homologues in a new family of ATPases. To address the functional significance of this putative ATPase activity in MutLalpha, we mutated conserved motifs for ATP hydrolysis and ATP binding in both Mlh1p and Pms1p and found that these changes disrupted DNA mismatch repair in vivo. Limited proteolysis with purified recombinant MutLalpha demonstrated that the NH(2) terminus of MutLalpha undergoes conformational changes in the presence of ATP and nonhydrolyzable ATP analogs. Furthermore, two-hybrid analysis suggested that these ATP-binding-induced conformational changes promote an interaction between the NH(2) termini of Mlh1p and Pms1p. Surprisingly, analysis of specific mutants suggested differential requirements for the ATPase motifs of Mlh1p and Pms1p during DNA mismatch repair. Taken together, these results suggest that MutLalpha undergoes ATP-dependent conformational changes that may serve to coordinate downstream events during yeast DNA mismatch repair.  相似文献   

19.
The dimeric DNA mismatch repair protein MutL has a key function in communicating mismatch recognition by MutS to downstream repair processes. Dimerization of MutL is mediated by the C-terminal domain, while activity of the protein is modulated by the ATP-dependent dimerization of the highly conserved N-terminal domain. Recently, a crystal structure analysis of the Escherichia coli MutL C-terminal dimerization domain has been reported and a model for the biological dimer was proposed. In this model, dimerization is mediated by the internal (In) subdomain comprising residues 475-569. Here, we report a computational analysis of all protein interfaces observed in the crystal structure and suggest that the biological dimer interface is formed by a hydrophobic surface patch of the external (Ex) subdomain (residues 432-474 and 570-615). Moreover, sequence analysis revealed that this surface patch is conserved among the MutL proteins. To test this hypothesis, single and double-cysteine variants of MutL were generated and tested for their ability to be cross-linked with chemical cross-linkers of various size. Finally, deletion of the C-terminal residues 605-615 abolished homodimerization. The biochemical data are fully compatible with a revised model for the biological dimer, which has important implications for understanding the heterodimerization of eukaryotic MutL homologues, modeling the MutL holoenzyme and predicting protein-protein interaction sites.  相似文献   

20.
MutS is the key protein of the Escherichia coli DNA mismatch repair system. It recognizes mispaired and unpaired bases and has intrinsic ATPase activity. ATP binding after mismatch recognition by MutS serves as a switch that enables MutL binding and the subsequent initiation of mismatch repair. However, the mechanism of this switch is poorly understood. We have investigated the effects of ATP binding on the MutS structure. Crystallographic studies of ATP-soaked crystals of MutS show a trapped intermediate, with ATP in the nucleotide-binding site. Local rearrangements of several residues around the nucleotide-binding site suggest a movement of the two ATPase domains of the MutS dimer toward each other. Analytical ultracentrifugation experiments confirm such a rearrangement, showing increased affinity between the ATPase domains upon ATP binding and decreased affinity in the presence of ADP. Mutations of specific residues in the nucleotide-binding domain reduce the dimer affinity of the ATPase domains. In addition, ATP-induced release of DNA is strongly reduced in these mutants, suggesting that the two activities are coupled. Hence, it seems plausible that modulation of the affinity between ATPase domains is the driving force for conformational changes in the MutS dimer. These changes are driven by distinct amino acids in the nucleotide-binding site and form the basis for long-range interactions between the ATPase domains and DNA-binding domains and subsequent binding of MutL and initiation of mismatch repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号