首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using the benzothiazolium-4-quinolium dye, TO-PRO-1, to detect cell death in live embryos, we labeled a developmental series of Wnt-1 null mutant and wild type embryos to determine if cell death contributed to the absence of the midbrain and rostral metencephalon observed in Wnt-1 mutant embryos. We found that there is no detectable cell death at early somite stages in Wnt-1 mutant embryos. However, we detected a significant, but transient, population of dying cells within the anterior dorsal metencephalon in 20–29 somite stage embryos. These cells located in the anterior dorsal metencephalon also stain positive using the TUNEL technique that utilizes terminal transferase to label DNA fragments that are typical in the nuclei of apoptotic cells. Thus, programmed cell death plays a role in the loss of the metencephalon, but apparently does not contribute to the earliest aspect of the mutant phenotype, namely the loss of the midbrain. © 1996 John Wiley & Sons, Inc.  相似文献   

2.
Embryos of higher metazoans are divided into repeating units early in development. In Drosophila, the earliest segmental units to form are the parasegments. Parasegments are initially defined by alternating stripes of expression of the fushi-tarazu and even-skipped genes. How fushi-tarazu and even-skipped define the parasegment boundaries, and how parasegments are lost when fushi-tarazu or even-skipped fail to function correctly, have never been fully or properly explained. Here we show that parasegment widths are defined early by the relative levels of fushi-tarazu and even-skipped at stripe junctions. Changing these levels results in alternating wide and narrow parasegments. When shifted by 30% or more, the enlarged parasegments remain enlarged and the reduced parasegments are lost. Loss of the reduced parasegments occurs in three steps; delamination of cells from the epithelial layer, apoptosis of the delaminated cells and finally apoptosis of inappropriate cells remaining at the surface. The establishment and maintenance of vertebrate metameres may be governed by similar processes and properties.  相似文献   

3.
We have investigated the role of cyclin-dependent kinases in cell death and found that the expression of cyclin-dependent kinase 5 (Cdk5) is associated with apoptotic cell death in both adult and embryonic tissues. By double labeling immunohistochemistry and confocal microscopy, we specifically associated the expression of Cdk5 to dying cells. The association of Cdks with cell death is unique to Cdk5 as this association is not found with the other Cdks (Cdk 1–8) and cell death. The differential increase in Cdk5 expression is at the level of protein only, and no differences can be detected at the level of mRNA. Using both limbs of mutant mice defective in the pattern of interdigital cell death and limbs with increased interdigital cell death by retinoic acid treatment, we confirmed the specificity of Cdk5 protein expression in dying cells. To investigate the regulation of Cdk5 during cell death, we examined the expression of a regulatory protein of Cdk5, p35, and found p35 to be expressed in the dying cells as well. Similar to Cdk5, there is also no specific differential expression of the p35 mRNA in dying cells. Our results suggest a role for Cdk5 and p35 proteins in cell death. This protein complex may function in the rearrangement of the cytoskeleton during apoptosis. Dev. Genet. 21:258–267, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

4.
5.
根毛是植物体吸收养分的重要器官, 自然条件下根毛的寿命很短, 仅能存活2–3周, 随即脱落死亡。以模式植物拟南芥(Arabidopsis thaliana)根毛为材料, 对根毛死亡的细胞学特征进行了报道。结果发现, 根毛衰老死亡后细胞内的原生质体发生了收缩, 并在胞质中观察到凝集物的出现; 通过原位末端标记(TUNEL)检测, 发现幼根上的根毛细胞核DNA发生了片段化。上述结果表明, 拟南芥根毛的衰老死亡很可能是植物体自主调控的程序性细胞死亡(PCD)。另外, 当根毛衰老死亡后,细胞核大多会迁移到靠近根毛基部的位置, 且正常的长管状根毛发生旋转扭曲。  相似文献   

6.
Cell death and efficient engulfment of dying cells ensure tissue homeostasis and is involved in pathogenesis. Clearance of dying cells is a complex and dynamic process coordinated by interplay between ligands on dying cell, bridging molecules, and receptors on engulfing cells. In this review, we will discuss recent advances and significance of molecular changes on the surface of dying cells implicated in their recognition and clearance as well as factors released by dying cells that attract macrophages to the site of cell death. It is now becoming apparent that phagocytes use a specific set of mechanisms to discriminate between live and dead cells, and this phenomenon will be illustrated here. Next, we will discuss potential mechanisms by which removal of dying cells could modulate immune responses of phagocytes, in particular of macrophages. Finally, we will address possible strategies for manipulating the immunogenicity of dying cells in experimental cancer therapies.  相似文献   

7.
We report the first attempt of its kind to study genetic interactions using young Drosophila embryos that are mosaic for wildtype and mutant cells. Using nuclear transplantation we make mosaic embryos in which a patch of cells lacks a particular segmentation gene, A. With antibodies, we than look at the expression of another gene that is known to be downstream of gene A, with respect to the cells in the patch. We have examples of patches of hairy cells (where we monitor the effect on fushi tarazu (ftz) expression), even-skipped (monitoring ftz) and ftz (monitoring engrailed and Ultrabithorax). Our main finding is that the dependence of engrailed expression on the ftz gene is strictly cell-autonomous. This result goes some way towards explaining the dependence of Ultrabithorax expression on ftz, a dependence we show to be locally cell-autonomous within parts of parasegments 6 and 8 but non autonomous within parasegment 7.  相似文献   

8.
采用树脂包埋技术,以AtRabD2b共抑制植株死亡发生茎段为实验材料,制备半薄切片和超薄切片,观察突变体茎段死亡的细胞学特征。结果表明:(1)共抑制植株茎细胞的死亡首先在表皮细胞层中发现,然后向切片圆周两侧以及内侧细胞蔓延。(2)共抑制植株茎细胞出现染色质边缘化、叶绿体内囊体片层膜数目减少、细胞器成分被液泡吞噬等异常现象。这些细胞学特征暗示共抑制植株茎段发生了细胞程序性死亡,由此推断AtRabD基因对拟南芥茎顶端细胞的生长有重要的维持作用。  相似文献   

9.
Steroid regulation of autophagic programmed cell death during development   总被引:18,自引:0,他引:18  
Apoptosis and autophagy are morphologically distinct forms of programmed cell death. While autophagy occurs during the development of diverse organisms and has been implicated in tumorigenesis, little is known about the molecular mechanisms that regulate this type of cell death. Here we show that steroid-activated programmed cell death of Drosophila salivary glands occurs by autophagy. Expression of p35 prevents DNA fragmentation and partially inhibits changes in the cytosol and plasma membranes of dying salivary glands, suggesting that caspases are involved in autophagy. The steroid-regulated BR-C, E74A and E93 genes are required for salivary gland cell death. BR-C and E74A mutant salivary glands exhibit vacuole and plasma membrane breakdown, but E93 mutant salivary glands fail to exhibit these changes, indicating that E93 regulates early autophagic events. Expression of E93 in embryos is sufficient to induce cell death with many characteristics of apoptosis, but requires the H99 genetic interval that contains the rpr, hid and grim proapoptotic genes to induce nuclear changes diagnostic of apoptosis. In contrast, E93 expression is sufficient to induce the removal of cells by phagocytes in the absence of the H99 genes. These studies indicate that apoptosis and autophagy utilize some common regulatory mechanisms.  相似文献   

10.
A large number of cells die via programmed cell death during the normal development of the Drosophila optic lobe. In this study, we report the precise spatial and temporal pattern of cell death in this organ. Cell death in the developing optic lobe occurs in two distinct phases. The first phase extends from the start of metamorphosis to the mid-pupal stage. During this phase, a large number of cells die in the optic lobe as a whole, with a peak of cell death at an early pupal stage in the lamina and medulla cortices and the region of the T2/T3/C neurons, and a smaller number of dead cells observed in the lobula plate cortex. The second phase extends from the mid-pupal stage to eclosion. Throughout this period, a small number of dying cells can be observed, with a small peak at a late pupal stage. Most of the dying cells are neurons. During the first phase, dying cells are distributed in specific patterns in cortices. The lamina cortex contains two distinct clusters of dying cells; the medulla cortex, four clusters; the lobula plate cortex, one cluster; and the region of the T2/T3/C neurons, one cluster. Many of the clusters maintain their distinct positions in the optic lobe but others extend the region they cover during development. The presence of distinct clusters of dying cells at different phases suggests that distinct mechanisms control cell death during different stages of optic lobe development in Drosophila.  相似文献   

11.
Bone morphogenetic proteins (BMPs) play a crucial role in programmed cell death (PCD), a biological process required for the sculpturing of the embryonic limbs. However, it is unknown if BMP signaling directly promotes cell death, or if it induces a molecular cascade that culminates in cell death. Given that Smad8, which encodes one component of BMP signaling, is expressed during the regression of interdigital tissue and responds to BMPs, we presumed that it may be expressed in other cell death areas during chick limb development such as the anterior and posterior necrotic zones (ANZ and PNZ). The present study found that the Smad8 expression pattern in the anterior mesoderm of the hindlimb is very similar to that observed in limbs stained to detect cell death. Also, BMPs and retinoic acid, which act as apoptosis-promoting factors, induced expression of Smad8 before the onset of cell death, while sonic hedgehog protein, acting as a survival factor, inhibited Smad8 expression in the ANZ. However, although there was correlation between Smad8 expression patterns and PCD in the ANZ, phosphorylated forms of SMAD1/5/8 and TUNEL staining did not co-localize in dying cells. Interestingly, a short pulse of BMP was sufficient to trigger cell death. On the other hand, most dying cells were located in the avascular region, while many cells expressing Smad8 were located in the vascular region of the ANZ. These results suggest that BMPs mediated by SMAD signaling activate a molecular cascade that culminates in PCD.  相似文献   

12.
The retinoblastoma (RB) protein is present at low levels in early mouse embryos and in pluripotent P19 embryonal carcinoma cells; however, the levels of RB rise dramatically in neuroectoderm formed both in embryos and in differentiating cultures of P19 cells. To investigate the effect of inactivating RB and related proteins p107 and p130, we transfected P19 cells with genes encoding mutated versions of the adenovirus E1A protein that bind RB and related proteins. When these E1A-expressing P19 cells were induced to differentiate into neuroectoderm, there was a striking rise in the expression of c-fos and extensive cell death. The ultrastructural and biochemical characteristics of the dying cells were indicative of apoptosis. The dying cells were those committed to the neural lineages because neurons and astrocytes were lost from differentiating cultures. Cell death was dependent on the ability of the E1A protein to bind RB and related proteins. Our results suggest that proteins of the RB family are essential for the development of the neural lineages and that the absence of functional RB activity triggers apoptosis of differentiating neuroectodermal cells.  相似文献   

13.
Huh JR  Guo M  Hay BA 《Current biology : CB》2004,14(14):1262-1266
Achieving proper organ size requires a balance between proliferation and cell death. For example, at least 40%-60% of cells in the Drosophila wing disc can be lost, yet these discs go on to give rise to normal-looking adult wings as a result of compensatory proliferation. The signals that drive this proliferation are unknown. One intriguing possibility is that they derive, at least in part, from the dying cells. To explore this hypothesis, we activated cell death signaling in specific populations of cells in the developing wing but prevented these cells from dying through expression of the baculovirus p35 protein, which inhibits the activity of effector caspases that mediate apoptosis. This allowed us to uncouple the activation steps of apoptosis from death itself. Here we report that stimulation of cell death signaling in the wing disc-in the absence of cell death-results in increased proliferation and ectopic expression of Wingless, a known mitogen in the wing. Activation of the apical cell death caspase Dronc is necessary and sufficient to drive both of these processes. Our results demonstrate an unanticipated function, the nonautonomous induction of proliferation, of an apical cell death caspase. This activity is likely to contribute to tissue homeostasis by promoting local compensatory proliferation in response to cell death. We speculate that dying cells may communicate cell fate or behavior instructions to their neighbors in other contexts as well.  相似文献   

14.
The adapter protein FADD consists of two protein interaction domains: a death domain and a death effector domain. The death domain binds to activated death receptors such as Fas, whereas the death effector domain binds to procaspase 8. An FADD mutant, which consists of only the death domain (FADD-DD), inhibits death receptor-induced apoptosis. FADD-DD can also activate a mechanistically distinct, cell type-specific apoptotic pathway that kills normal but not cancerous prostate epithelial cells. Here, we show that this apoptosis occurs through activation of caspases 9, 3, 6, and 7 and a serine protease. Simultaneous inhibition of caspases and serine proteases prevents FADD-DD-induced death. Inhibition of either pathway alone does not prevent cell death but does affect the morphology of the dying cells. Normal prostate epithelial cells require both the caspase and serine protease inhibitors to efficiently prevent apoptosis in response to TRAIL. In contrast, the serine protease inhibitor does not affect TRAIL-induced death in prostate tumor cells suggesting that the FADD-DD-dependent pathway can be activated by TRAIL. This apoptosis pathway is activated in a cell type-specific manner that is defective in cancer cells, suggesting that this pathway may be targeted during cancer development.  相似文献   

15.
Inhibitor of apoptosis proteins (IAPs) act as endogenous inhibitors of active caspases. Drosophila IAP1 (DIAP1) activity is required to keep cells from undergoing apoptosis. The central cell death regulators Reaper and Hid induce apoptosis very rapidly by inhibiting DIAP1 function. We have developed a system for replacing endogenous DIAP1 with mutant forms of the protein, allowing us to examine the roles of various domains of the protein in living and dying cells. We found that DIAP1 is cleaved by a caspase early after the initiation of apoptosis. This cleavage is required for DIAP1 degradation, but Rpr and Hid can still initiate apoptosis in the absence of cleavage. The cleavage of DIAP1 promotes DIAP1 degradation in a manner dependent on the function of the ubiquitin ligase function of the DIAP1 ring domain. This ring domain function is required for Hid-induced apoptosis. We propose a model that synthesizes our data with those of other laboratories and provide a consistent model for DIAP1 function in living and dying cells.  相似文献   

16.
By using a hsp70-Ubx fusion gene, we have ectopically expressed a Ubx product in the embryonic head primordia and studied the developmental effects on the larval head. We find that after high and persistent levels of Ubx product, the head is replaced by three (C1, C2 and C3) abdominal-like denticle belts. The C2 and C3 belts are the homeotic transformations of parasegments 1 and 2, respectively, while the C1 belt probably derives from the transformation and subsequent fusion of the most anterior procephalic primordia. On the basis of their response to the Ubx product and other arguments, we propose that the larval head is made of two genetically distinct components; one is the procephalon and the anterior region of the mandibular lobe, and the other is part of the parasegmental trunk and includes parasegments 1 and 2. Our results also indicate that most or all the larval head structures derive from precursor cells of ventral origin.  相似文献   

17.
Jimpy is one of many related mutations affecting the myelin proteolipid protein gene that causes severe hypomyelination in the central nervous system (CNS). Underlying the hypomyelination is a failure of oligodendrocytes (OLs) to differentiate, and the premature death of large numbers of OLs during the developmental period. Previous light and electron microscopic evidence suggested that jimpy OLs die in a manner consistent with programmed cell death. We have used TUNEL staining as a biochemical marker for apoptosis in conjunction with immunostaining for OL and myelin markers. At 13 - 14 days postnatal, a time when the number of dying OLs in jimpy CNS is increased more than five times normal, there are only modest increases (70% in spinal cord; 20% in cerebral cortex) in TUNEL labeled cells in mutant CNS tissues. The results in vitro are similar, and only a small per cent of TUNEL labeled cells have the antigenic phenotype of OLs. The discrepancy between numbers of dying and TUNEL labeled cells suggests either that most jimpy OLs do not undergo programmed cell death or that the biochemical pathways leading to their death do not involve DNA fragmentation which is detected by the TUNEL method. We also present evidence that jimpy OLs show increased survival and enhanced differentiation when they are grown in vitro in medium conditioned by cells lines which express products of the proteolipid protein gene. Cell lines expressing proteolipid protein and the alternatively spliced DM20 protein have differential effects on cell numbers and production of myelin-like membranes.  相似文献   

18.
Ji  Fengmin  Luo  Liaofu 《Genome biology》2004,5(2):1-36
High doses of ionizing irradiation and chemical mutagens induce random mutations and chromosome aberrations in cells of affected organisms and cause acute symptoms, delayed increased risk of cancer and accelerated aging. The mechanism of disease development remains unclear and no treatment exists for consequences of the mutagenic damage. We have proposed recently that extracellular genomic DNA from tissue fluids of a healthy organism, innate receptor-mediated nuclear delivery of this DNA, and its homologous recombination with cellular genomic sequences might function concertedly as a natural proofreading mechanism for somatic cell genomes. Here we hypothesize that cells dying from irradiation or chemical mutagens release heavily damaged DNA fragments that propagate mutations and chromosome aberrations to DNA-recipient cells via this mechanism, inducing cell death and release of their mutated DNA again into the bloodstream. The repeated release of the mutated DNA followed by its incorporation into cellular genomes would spread mutational damage in the affected organism, thus making this DNA the etiologic agent of either radiation sickness or post-mutagen exposure syndrome. The hypothesis opens a possibility to inhibit and treat the disease via administration of non-mutated genomic DNA fragments that would compete with the circulating mutant DNA fragments, entering cells in greater numbers, leading to replacement of mutant segments in cellular genomes. Injection of fragmented mouse DNA, but not human DNA, into lethally irradiated mice dramatically increased their survival. Similarly, the mouse DNA was more potent than human and salmon DNA in accelerating recovery of the normal leukocyte level in mice treated with the chemical mutagen cyclophosphamide. The species specificity of the DNA therapy suggests that the genomic sequences are the agent producing the effects.  相似文献   

19.
Summary A number of mutants of Drosophila melanogaster are characterized by the absence of structures present in the wild type. Imaginal discs from the wing mutants vestigial, apterous-Xasta, Beadex and cut and from the eye mutants Bar, eyeless and lozenge were examined by light and electron microscopy. In all these mutants, with the exception of lozenge, clear evidence of degeneration was found. The onset and duration of degeneration and the number and distribution of dying cells were specific characteristics of each mutant. In most cases the degenerate areas of the disc could be correlated with the missing parts of the adult wing or eye. In contrast, in wild type wing and eye discs and in wing discs from the mutant miniature, which has a wing reduced in size but fully formed, extensive cell death was not observed.The ultrastructural features of the degenerating areas weresimilar in all the mutants studied. Conspicuous aspects of the cytolytic process included condensation and fragmentation of the dying cells followed by phagocytosis of the cell fragments by neighboring disc cells.The results indicate that localized cell death during development is a widespread occurrence among Drosophila mutants which exhibit structural deficiències.  相似文献   

20.
Niemann-Pick type C is a neurodegenerative lysosomal storage disorder caused by mutations in either of two genes, npc1 and npc2. Cells lacking Npc1, which is a transmembrane protein related to the Hedgehog receptor Patched, or Npc2, which is a secreted cholesterol-binding protein, have aberrant organelle trafficking and accumulate large quantities of cholesterol and other lipids. Though the Npc proteins are produced by all cells, cerebellar Purkinje neurons are especially sensitive to loss of Npc function. Since Niemann-Pick type C disease involves circulating molecules such as sterols and steroids and a robust inflammatory response within the brain parenchyma, it is crucial to determine whether external factors affect the survival of Purkinje cells (PCs). We investigated the basis of neurodegeneration in chimeric mice that have functional npc1 in only some cells. Death of mutant npc1 cells was not prevented by neighboring wild-type cells, and wild-type PCs were not poisoned by surrounding mutant npc1 cells. PCs undergoing cell-autonomous degeneration have features consistent with autophagic cell death. Chimeric mice exhibited a remarkable delay and reduction of wasting and ataxia despite their substantial amount of mutant tissue and dying cells, revealing a robust mechanism that partially compensates for massive PC death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号