首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
A new yeast species, Kazachstania wufongensis, is proposed in this paper based on six strains isolated from soil in Taiwan. The species may produce one to four ellipsoidal ascospores in each ascus, directly transformed from diploid cells. Genus assignment and distinction of the species from other recognized species of Kazachstania is based on morphological and physiological characteristics, and on phylogenetic analysis of nucleotide sequences of the D1/D2 domains of the large subunit (LSU) rRNA gene. Sequence analysis of the D1/D2 domains of the LSU rRNA gene reveals that K. wufongensis is a member of the Kazachstania exigua complex, and its phylogenetically closest relatives are K. exigua, K. barnettii, K. bulderi, and K. turicensis. The species can be further differentiated from the other phylogenetically related species based on internal transcribed spacer sequence and electrophoretic karyotype. Therefore, the new species Kazachstania wufongensis sp. nov. is proposed. The type strain of this new species, which was isolated from forest soil in Wufong, Hsinchu, Taiwan, is FN21S03T (=CBS 10886T = BCRC 23138T).  相似文献   

4.
Phylogenetic analysis of Glomeromycota by partial LSU rDNA sequences   总被引:2,自引:0,他引:2  
We analyzed the large subunit ribosomal RNA (rRNA) gene [LSU ribosomal DNA (rDNA)] as a phylogenetic marker for arbuscular mycorrhizal (AM) fungal taxonomy. Partial LSU rDNA sequences were obtained from ten AM fungal isolates, comprising seven species, with two new primers designed for Glomeromycota LSU rDNA. The sequences, together with 58 sequences available from the databases, represented 31 AM fungal species. Neighbor joining and parsimony analyses were performed with the aim of evaluating the potential of the LSU rDNA for phylogenetic resolution. The resulting trees indicated that Archaeosporaceae are a basal group in Glomeromycota, Acaulosporaceae and Gigasporaceae belong to the same clade, while Glomeraceae are polyphyletic. The results support data obtained with the small subunit (SSU) rRNA gene, demonstrating that the LSU rRNA gene is a useful molecular marker for clarifying taxonomic and phylogenetic relationships in Glomeromycota.  相似文献   

5.
Tetrahymena thermophila mitochondrial DNA is a linear molecule with two tRNAs, large subunit beta (LSU beta) rRNA (21S rRNA) and LSU alpha rRNA (5.8S-like RNA) encoded near each terminus. The DNA sequence of approximately 550 bp of this region was determined in six species of Tetrahymena. In three species the LSU beta rRNA and tRNA(leu) genes were not present on one end of the DNA, demonstrating a mitochondrial genome organization different from that of T. thermophila. The DNA sequence of the LSU alpha rRNA was used to construct a mitochondrial phylogenetic tree, which was found to be topologically equivalent to a phylogenetic tree based on nuclear small subunit rRNA sequences (Sogin et al. (1986) EMBO J. 5, 3625-3630). The mitochondrial rRNA gene was found to accumulate base-pair substitutions considerably faster than the nuclear rRNA gene, the rate difference being similar to that observed for mammals.  相似文献   

6.
Arbuscular mycorrhizal (AM) fungi are known to exhibit high intra‐organism genetic variation. However, information about intra‐ vs. interspecific variation among the genes commonly used in diversity surveys is limited. Here, the nuclear small subunit (SSU) rRNA gene, internal transcribed spacer (ITS) region and large subunit (LSU) rRNA gene portions were sequenced from 3 to 5 individual spores from each of two isolates of Rhizophagus irregularis and Gigaspora margarita. A total of 1482 Sanger sequences (0.5 Mb) from 239 clones were obtained, spanning ~4370 bp of the ribosomal operon when concatenated. Intrasporal and intra‐isolate sequence variation was high for all three regions even though variant numbers were not exhausted by sequencing 12–40 clones per isolate. Intra‐isolate nucleotide variation levels followed the expected order of ITS > LSU > SSU, but the values were strongly dependent on isolate identity. Single nucleotide polymorphism (SNP) densities over 4 SNP/kb in the ribosomal operon were detected in all four isolates. Automated operational taxonomic unit picking within the sequence set of known identity overestimated species richness with almost all cut‐off levels, markers and isolates. Average intraspecific sequence similarity values were 99%, 96% and 94% for amplicons in SSU, LSU and ITS, respectively. The suitability of the central part of the SSU as a marker for AM fungal community surveys was further supported by its level of nucleotide variation, which is similar to that of the ITS region; its alignability across the entire phylum; its appropriate length for next‐generation sequencing; and its ease of amplification in single‐step PCR.  相似文献   

7.
Most molecular ecological studies of arbuscular mycorrhizal fungi (AMF) have been based on the rRNA gene sequences. However, information about intraspecific nucleotide variation is still limited in these fungi. In this study, we calculated the inter- and intrasporal nucleotide variation of Diversispora sp. EE1 using 78 cloned sequences from four spores within a ca 4960 bp fragment of the nuclear ribosomal operon spanning the near full length small ribosomal subunit (SSU) rRNA gene, the full internal transcribed spacer (ITS: ITS1-5.8S-ITS2) and ca 2740 bp of the large ribosomal subunit (LSU) rRNA gene. Data for each marker region (SSU, ITS and LSU) originated from the very same spores. Sequence variation resulting from point mutations and small indels was recorded in all regions. Highest sequence variation was observed in the ITS region at both the inter- and intrasporal levels. The ITS1 component was more variable than ITS2, whilst the 5.8S gene was the least variable component of the ITS region. Evolutionary divergence of gene copies between spores was intermediate for the LSU and lowest for the SSU. The SSU and the LSU genes had relatively similar evolutionary divergence per spore. Sequence variant richness was not exhaustive for any of the marker regions, indicating that multiple sequences per spore from multiple spores are needed when characterizing a species. This study provides reference sequences for ecological studies, permitting identification of AMF using any of the ribosomal regions or primer systems.  相似文献   

8.
9.
Evolutionary trees were constructed, by distance methods, from an alignment of 225 complete large subunit (LSU) rRNA sequences, representing Eucarya, Archaea, Bacteria, plastids, and mitochondria. A comparison was made with trees based on sets of small subunit (SSU) rRNA sequences. Trees constructed on the set of 172 species and organelles for which the sequences of both molecules are known had a very similar topology, at least with respect to the divergence order of large taxa such as the eukaryotic kingdoms and the bacterial divisions. However, since there are more than ten times as many SSU as LSU rRNA sequences, it is possible to select many SSU rRNA sequence sets of equivalent size but different species composition. The topologies of these trees showed considerable differences according to the particular species set selected.The effect of the dataset and of different distance correction methods on tree topology was tested for both LSU and SSU rRNA by repetitive random sampling of a single species from each large taxon. The impact of the species set on the topology of the resulting consensus trees is much lower using LSU than using SSU rRNA. This might imply that LSU rRNA is a better molecule for studying wide-range relationships. The mitochondria behave clearly as a monophyletic group, clustering with the Proteobacteria. Gram-positive bacteria appear as two distinct groups, which are found clustered together in very few cases. Archaea behave as if monophyletic in most cases, but with a low confidence.Abbreviations LSU rRNA large subunit ribosomal RNA - SSU rRNA small subunit ribosomal RNA - JC Jukes and Cantor - JN Jin and Nei Correspondence to: R. De Wachter  相似文献   

10.
We provide molecular systematics of a microporidian species, Nosema fumiferanae, one of the most common natural enemies of spruce budworm, Choristoneura fumiferana. The uncharacterized flanking region upstream of the large subunit (LSU) rRNA and the complete rRNA cistron of N. fumiferanae was 4,769 bp long. The organization of the rRNA gene was 5′‐LSU rRNA‐ITS‐SSU rRNA‐IGS‐5S‐3′ and corresponded primarily to most insect (i.e. lepidopteran) Nosema species identified and classified to date. Phylogenetic analysis based on the complete rRNA cistron indicated that N. fumiferanae is closely related to Nosema plutellae and is correctly assigned to the “true” Nosema group. Suggestions were provided on a criterion to delineate the “true” Nosema from other microsporidian species.  相似文献   

11.
Four ascosporulating strains of an undescribed methanol-assimilating yeast species were isolated from forest habitats in Hungary. Three were recovered from rotten wood and one from leaves of a sessile oak (Quercus petraea). An additional isolate of the undescribed species sharing similar phenotypic characters with the above-noted strains was recovered from the gut of an unidentified beetle collected from under the bark of a coniferous tree in Bulgaria. A closely related, but somewhat divergent strain was recovered from insect frass in a Ponderosa pine (Pinus ponderosa) collected in New Mexico, USA. Analysis of the D1/D2 sequences of the LSU rRNA gene placed the new species in the Ogataea clade. The ITS and the D1/D2 LSU sequences of the rRNA gene repeats were compared for the above-noted strains and that of the type strain of Ogataea zsoltii, the closest neighbour among currently recognized Ogataea species. Their relatedness was investigated by parsimony network analysis as well. As a result of the sequence analysis, it was concluded that the six strains isolated from tree associated habitats represent a single new yeast species. Ogataea saltuana sp. nov. is proposed to accommodate these strains. The type strain NCAIM Y.01833T (CBS 10795T, NRRL Y-48448T) was recovered from rotten wood of Scotch pine (Pinus silvestris) in Hungary. The GenBank accession number for the D1/D2 domain nuclear large subunit rRNA gene sequence of strain NCAIM Y.01833T (CBS 10795T, NRRL Y-48448T) is EU327033. The MycoBank number of the new species is MB 519966.  相似文献   

12.
The nearly complete nuclear large subunit ribosomal RNA (LSU rRNA) gene in corals was amplified by primers designed from polymerase chain reaction (PCR) strategies. The motif of the putative 3′-terminus of the LSU rRNA gene was sequenced and identified from intergenic spacer (IGS) clones obtained by PCR using universal primers designed for corals. The 3′-end primer was constructed in tandem with the universal 5′-end primer for the LSU rRNA gene. PCR fragments of 3500 bp were amplified for octocorals and non-Acropora scleractinian corals. More than 80% of the Acropora LSU rRNA gene (3000 bp) was successfully amplified by modification of the 5′-end of the IGS primer. Analysis of the 5′-end of LSU rDNA sequences, including the D1 and D2 divergent domains, indicates that the evolutionary rate of the LSU rDNA differs among these taxonomic groups of corals. The genus Acropora showed the highest divergence pattern in the LSU rRNA gene, and the presence of a long branch of the Acropora clade from the other scleractinian corals in the phylogenetic tree indicates that the evolutionary rate of Acropora LSU rDNA might have accelerated after divergence from the common ancestor of scleractinian corals. Received February 17, 2000; accepted June 12, 2000.  相似文献   

13.
14.
Devi Lal  Rup Lal 《Microbiology》2010,79(4):500-508
In the present study the role of horizontal gene transfer events in providing the mercury resistance is depicted. merA gene is key gene in mer operon and has been used for this swtudy. Phylogenetic analysis of aligned merA gene sequences shows broad similarities to the established 16S rRNA gene phylogeny. But there is no separation of bacterial merA gene from archael merA gene which suggests that merA gene in both these groups share considerable sequence homology. However, inconsistencies between merA gene and 16S rRNA gene phylogenetic trees are apparent for some taxa. These discrepancies in the phylogenetic trees for merA gene and 16S rRNA gene have lead to the suggestion that horizontal gene transfer (HGT) is a major contributor for its evolution. The close association among members of different groups in merA gene tree, as supported by high bootstrap values, deviations in GC content and codon usage pattern indicate the possibility that horizontal gene transfer events might have taken place during the evolution of this gene.  相似文献   

15.
The SSU rRNA, LSU rRNA, and cox2 genes of an unidentified Haliphthoros-like marine oomycete (NJM0034) and Haliphthoros milfordensis (NJM0131) were sequenced, and their phylogenetic relationships are analyzed and discussed. All phylogenetic trees showed that NJM0034 and NJM0131 were branched before separation of the two main saprolegnian and peronosporalean clades. These data suggest that the clear phylogenetic separation of those marine oomycete endoparasites from the two main oomycete clades. Excepting the LSU rRNA gene tree, NJM0034 and Haliphthoros spp. did not form a monophyletic group. On the other hand, H. milfordensis NJM0131 clustered with H. philippinensis SANK 15178, not with H. milfordensis NJM9434 in the cox2 amino acid sequence (COII) tree. This result strongly suggests that a taxonomic reinvestigation of the genus Haliphthoros should be considered.  相似文献   

16.
Eleven clones from five species of the planktonic microalgae, (Chattonella antiqua, Chattonella marina, Heterosigma akashiwo, Alexandrium catenella, and Scrippsiella trochoidea), which were collected from the Seto Inland Sea in Japan and from Thailand, were subjected to nucleotide sequence analysis of the D1/D2 domain of the large subunit (LSU) of their ribosomal RNA genes. After amplification by polymerase chain reaction using degenerated primers, whole-nucleotide sequences for the D1/D2 domains of the LSU rRNA gene of 11 microalgae were analyzed. Phylogenic tree analysis using these nucleotide sequences showed each species located in a cluster corresponding to its morphological classification. The nucleotide sequence data for Chattonella spp. suggest that multiple clones of both Chattonella antiqua and Chattonella marina are present in the Seto Inland Sea and that red tide blooms of Chattonella spp. in different years may have contained different clones. Received September 6, 1999; accepted December 16, 1999.  相似文献   

17.
18.
The photosynthetic euglenoid genus Cryptoglena is differentiated from other euglenoid genera by having a longitudinal sulcus, one chloroplast, two large trough‐shaped paramylon plates positioned between the chloroplast and pellicle, and lack of metaboly. The genus contains only two species. To understand genetic diversity and taxonomy of Cryptoglena species, we analyzed molecular and morphological data from 25 strains. A combined data set of nuclear SSU and LSU and plastid SSU and LSU rRNA genes was analyzed using Bayesian, maximum likelihood, maximum parsimony, and distance (neighbor joining) methods. Although morphological data of all strains showed no significant species‐specific pattern, molecular data segregated the taxa into five clades, two of which represented previously known species: C. skujae and C. pigra, and three of which were designated as the new species, C. soropigra, C. similis, and C. longisulca. Each species had unique molecular signatures that could be found in the plastid SSU rRNA Helix P23_1 and LSU rRNA H2 domain. The genetic similarity of intraspecies based on nr SSU rDNA ranged from 97.8% to 100% and interspecies ranged from 95.3% to 98.9%. Therefore, we propose three new species based on specific molecular signatures and gene divergence of the nr SSU rDNA sequences.  相似文献   

19.
20.
Twelve strains representing five novel yeast species were isolated from natural samples distributed in mountain areas in Taiwan during 2007 and 2009. Sequence analysis of the D1/D2 domain of the large subunit (LSU) rRNA gene revealed that these species are members of the Cyberlindnera clade. These five new species have a greater than 1% difference from their closest relatives in the sequences of the D1/D2 domain of the LSU rRNA gene and were well separated from their closest relatives in terms of physiological characteristics. Moreover, a sexual state could not be found in these five novel yeast species. Therefore, the scientific names of Candida maesa sp. nov. (type strain GJ8L01T), Candida takata sp. nov. (type strain EN25S01T), Candida taoyuanica sp. nov. (type strain GY15S07T), Candida hungchunana sp. nov. (type strain NC3W71T) and Candida stauntonica sp. nov. (type strain GY13L05T) were proposed to accommodate these yeasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号