首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study investigated the effects of damage to the basal forebrain cholinergic system upon [3H]ketanserin binding in the neocortex and hippocampus of monkeys. [3H]Ketanserin specifically binds to serotonin type-2 receptor sites. Lesions were placed in the medial septal area, nucleus basalis, or both regions. Ten months later, [3H]ketanserin binding was increased in the neocortex, but not in the hippocampus, while levels of choline acetyltransferase (acetyl-CoA: choline O-acetyltransferase, EC 2.3.1.6) activity decreased in the neocortex and hippocampus. Changes in the levels of choline acetyltransferase and [3H]ketanserin binding were correlated significantly in the neocortex (r = −0.64, P < 0.025), but not in the hippocampus. The data suggest that degeneration of the basal forebrain cholinergic system may alter serotonergic function in the neocortex.  相似文献   

2.
Abstract: Muscarinic and nicotinic cholinergic receptors and choline acetyltransferase activity were studied in postmortem brain tissue from patients with histopathologically confirmed Parkinson's disease and matched control subjects. Using washed membrane homogenates from the frontal cortex, hippocampus, caudate nucleus, and putamen, saturation analysis of specific receptor binding was performed for the total number of muscarinic receptors with [3H]quinuclidinyl benzilate, for muscarinic M1 receptors with [3H]pirenzepine, for muscarinic M2 receptors with [3H]oxotremorine-M, and for nicotinic receptors with (–)-[3H]nicotine. In comparison with control tissues, choline acetyltransferase activity was reduced in the frontal cortex and hippocampus and unchanged in the caudate nucleus and putamen of parkinsonian patients. In Parkinson's disease the maximal binding site density for [3H]quinuclidinyl benzilate was increased in the frontal cortex and unaltered in the hippocampus, caudate nucleus, and putamen. Specific [3H]pirenzepine binding was increased in the frontal cortex, unaltered in the hippocampus, and decreased in the caudate nucleus and putamen. In parkinsonian patients Bmax values for specific [3H]oxotremorine-M binding were reduced in the cortex and unchanged in the hippocampus and striatum compared with controls. Maximal (–)-[3H]nicotine binding was reduced in both the cortex and hippocampus and unaltered in both the caudate nucleus and putamen. Alterations of the equilibrium dissociation constant were not observed for any ligand in any of the brain areas examined. The present results suggest that both the innominatocortical and the septohippocampal cholinergic systems degenerate in Parkinson's disease. The reduction of cortical [3H]oxotremorine-M and (–)-[3H]nicotine binding is compatible with the concept that significant numbers of the binding sites labelled by these ligands are located on presynaptic cholinergic nerve terminals, whereas the increased [3H]pirenzepine binding in the cortex may reflect postsynaptic denervation supersensitivity.  相似文献   

3.
Three days after systemic administration of kainic acid (15 mg/kg, s.c.), selected cholinergic markers (choline acetyltransferase, acetylcholinesterase, muscarinic acetylcholine receptor, and high-affinity choline uptake) and GABAergic parameters [benzodiazepine and gamma-aminobutyric acid (GABA) receptors] were studied in the frontal and piriform cortex, dorsal hippocampus, amygdaloid complex, and nucleus basalis. Kainic acid treatment resulted in a significant reduction of choline acetyltransferase activity in the piriform cortex (by 20%), amygdala (by 19%), and nucleus basalis (by 31%) in comparison with vehicle-injected control rats. A lower activity of acetylcholinesterase was also determined in the piriform cortex following parenteral kainic acid administration. [3H]Quinuclidinyl benzilate binding to muscarinic acetylcholine receptors was significantly decreased in the piriform cortex (by 33%), amygdala (by 39%), and nucleus basalis (by 33%) in the group treated with kainic acid, whereas such binding in the hippocampus and frontal cortex was not affected by kainic acid. Sodium-dependent high-affinity choline uptake into cholinergic nerve terminals was decreased in the piriform cortex (by 25%) and amygdala (by 24%) after kainic acid treatment. In contrast, [3H]flunitrazepam binding to benzodiazepine receptors and [3H]muscimol binding to GABA receptors were not affected 3 days after parenteral kainic acid application in any of the brain regions studied. The data indicate that kainic acid-induced limbic seizures result in a loss of cholinergic cells in the nucleus basalis that is paralleled by degeneration of cholinergic fibers and cholinoceptive structures in the piriform cortex and amygdala, a finding emphasizing the important role of cholinergic mechanisms in generating and/or maintaining seizure activity.  相似文献   

4.
It has been reported that N-methylcarbamylcholine (MCC), a nicotinic agonist, binds to central nicotinic receptors and causes an increase of acetylcholine (ACh) release from certain central cholinergic nerve terminals. The present experiments determine whether these two phenomena change in response to the chronic administration of nicotine, a procedure known to result in an increase in nicotinic binding sites. Chronic nicotine caused a brain region-specific up-regulation of [3H]MCC sites; binding increased in the frontal cortex, parietal cortex, striatum, and hippocampus, but not in the occipital cortex or cerebellum. The effect of nicotine was selective to nicotinic binding sites, because muscarinic sites, both M1 ([ 3H]pirenzepine) and M2 ([3H]ACh), were unaffected by chronic nicotine treatment. MCC increased the release of ACh from the frontal cortex and hippocampus by a calcium-dependent mechanism; MCC did not alter ACh release from striatum or occipital cortex of control animals. The MCC-induced increase in ACh release was not apparent in those animals which had been treated with nicotine. There was a partial recovery of nicotinic autoreceptor function when animals were allowed to recover (4 days) following chronic nicotine treatment, but the density of binding sites remained increased compared to control. Chronic nicotine did not change the potassium-evoked release of ACh from the frontal cortex or hippocampus, but decreased this measure from striatum. It also decreased the ACh content of the striatum, but not that of the cortex or the hippocampus; the activity of choline acetyltransferase was not altered in any of the regions tested.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The main objective of the present study was to determine whether cholinergic markers (choline acetyltransferase activity and nicotinic and muscarinic receptors) are altered in Alzheimer's disease. Choline acetyltransferase activity in Alzheimer's brains was markedly reduced in various cortical areas, in the hippocampus, and in the nucleus basalis of Meynert. The maximal density of nicotinic sites, measured using the novel nicotinic radioligand N-[3H]methylcarbamylcholine, was decreased in cortical areas and hippocampus but not in subcortical regions. M1 muscarinic cholinergic receptor sites were assessed using [3H]pirenzepine as a selective ligand; [3H]pirenzepine binding parameters were not altered in most cortical and subcortical structures, although the density of sites was modestly increased in the hippocampus and striatum. Finally, M2-like muscarinic sites were studied using [3H]-acetylcholine, under muscarinic conditions. In contrast to M1 muscarinic sites, the maximal density of M2-like muscarinic sites was markedly reduced in all cortical areas and hippocampus but was not altered in subcortical structures. These findings reveal an apparently selective alteration in the densities of putative nicotinic and muscarinic M2, but not M1, receptor sites in cortical areas and in the hippocampus in Alzheimer's disease.  相似文献   

6.
[3H]Hemicholinium-3 (HC-3) was used to label sodium-dependent, high-affinity choline uptake sites in regions of rat brain. Autoradiography revealed a high density of [3H]HC-3 binding sites in brain regions with a high density of cholinergic terminals, such as the interpeduncular nucleus, caudate-putamen, and olfactory tubercle. This distribution of [3H]HC-3 binding sites was in close agreement with the amounts of choline acetyltransferase in specific nuclei and subregions of rat brain. Destruction of presynaptic cholinergic projections in the cerebral cortex and the basal ganglia by injection of excitotoxins reduced [3H]HC-3 binding by 40-50%. These data indicate that sodium-dependent [3H]HC-3 binding sites are related to the choline transport system present in cholinergic neurons.  相似文献   

7.
Previous work has shown that [3H]paroxetine is a potent and selective in vitro label for serotonin uptake sites in the mammalian brain. In the present study, [3H]paroxetine was tested in mice as an in vivo label for serotonin uptake sites. Maximum tritium concentration in the whole brain (1.4% of the intravenous dose) was reached 1 h after injection into a tail vein. Distribution of the tracer at 3 h after injection followed the distribution of serotonin uptake sites known from previous in vitro binding studies (r = 0.85). The areas of highest [3H]paroxetine concentration, in decreasing order, were: hypothalamus greater than frontal cortex greater than olfactory tubercles greater than thalamus greater than upper colliculi greater than brainstem greater than hippocampus greater than striatum greater than cerebellum. Preinjection of carrier paroxetine (1 mg/kg) significantly decreased [3H]paroxetine concentration in all areas except in the cerebellum, which is known to contain a relatively low number of specific binding sites. Kinetic studies showed highest specific [3H]paroxetine binding (tissue minus cerebellum) at 2 h after injection and slow clearance of activity thereafter (half-time of dissociation from the hypothalamus, 215 min). The specificity of in vivo [3H]paroxetine binding was studied by preinjecting monoamine uptake blockers or receptor antagonists 5 min before administration of [3H]paroxetine. Serotonergic or muscarinic cholinergic receptor antagonists and dopamine or norepinephrine uptake blockers did not reduce the in vivo binding of [3H]paroxetine. In contrast, there was an excellent correlation (r = 0.99) between the in vivo inhibitory potencies of serotonin uptake blockers in this study and previously published in vitro data on inhibition of [3H] serotonin uptake in brain synaptosomes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The human platelet contains a functional 5-hydroxytryptamine (5-HT) receptor that appears to resemble the 5-HT2 subtype. In this study, we have used the iodinated derivative [125I]iodolysergic acid diethylamide ([125I]iodoLSD) in an attempt to label 5-HT receptors in human platelet and frontal cortex membranes under identical assay conditions to compare the sites labelled in these two tissues. In human frontal cortex, [125I]iodoLSD labelled a single high-affinity site (KD = 0.35 +/- 0.02 nM). Displacement of specific [125I]iodoLSD binding indicated a typical 5-HT2 receptor inhibition profile, which demonstrated a significant linear correlation (r = 0.97, p less than 0.001, n = 17) with that observed using [3H]ketanserin. However, [125I]iodoLSD (Bmax = 136 +/- 7 fmol/mg of protein) labelled significantly fewer sites than [3H]ketanserin (Bmax = 258 +/- 19 fmol/mg of protein) (p less than 0.001, n = 6). In human platelet membranes, [125I]iodoLSD labelled a single site with affinity (KD = 0.37 +/- 0.03 nM) similar to that in frontal cortex. The inhibition profile in the platelet showed significant correlation with that in frontal cortex (r = 0.96, p less than 0.001, n = 16). We conclude that the site labelled by [125I]iodoLSD in human platelet membranes is biochemically similar to that in frontal cortex and most closely resembles the 5-HT2 receptor subtype, although the discrepancy in binding capacities of [125I]iodoLSD and [3H]ketanserin raises a question about the absolute nature of this receptor.  相似文献   

9.
Muscarinic receptor binding and choline acetyltransferase (EC 2.3.1.6.) activity were assayed in three brain regions of 4-, 12- and 24-month-old Fischer-344 rats. Statistically significant age differences in cholinergic parameters were observed in each region. The affinity for [3H]quinuclidinyl benzilate increased in the cortex (24 vs 12 and 4 months), but Bmax decreased in the cortex (24 vs 12 vs 4 months), striatum (24 vs 12 vs 4 months) and hippocampus (24 vs 12 and 24 vs 4). Assays of carbamylcholine inhibition of [3H]quinuclidinyl benzilate binding in the hippocampus showed that high affinity agonist binding increased with age (24 vs 12 and 4 months), and the percentage of muscarinic binding to high affinity agonist sites decreased (24 vs 12 vs 4 months). In addition, the affinity of the agonist oxotremorine for muscarinic binding sites also increased in the hippocampus (12 and 24 vs 4 months). Although the Km of choline acetyltransferase for choline chloride did not change in any region tested, the Km for acetyl coenzyme A decreased in the hippocampus (24 vs 12 months), but increased (4 vs 12 months) and then decreased (12 vs 24 months) in the striatum. Statistically significant age-related declines in Vmax for choline acetyltransferase were noted in the striatum (24 < 12 < 4 months), but no age differences in this parameter were observed in the cortex or the hippocampus. Statistically significant positive correlations between Vmax for choline acetyltransferase and Bmax for [3H]quinuclidinyl benzilate binding were observed in each of the brain regions of 4-, 12- and 24-month-old rats.

The findings have implications for use of the Fischer-344 male rat as an animal model of aging and age-related disorders of the human brain, including dementia of the Alzheimer type.  相似文献   


10.
Cholinotoxic Effects of Aluminum in Rat Brain   总被引:1,自引:0,他引:1  
The in vivo and in vitro effects of Al on the cholinergic system of rat brain were studied. The amount of Al accumulated after the chronic, intraperitoneal administration of aluminium gluconate (Al-G) or AlCl3, both at a dose of 1 mg/ml/100 g of body weight, increased in the frontal and parietal cortices, the hippocampus, and the striatum. Significantly decreased choline acetyltransferase activities after chronic Al treatment were measured in the parietal cortex, the hippocampus, and the striatum, but not in the frontal cortex. The acetylcholinesterase activity was not changed significantly in any brain area investigated. Both Al-G and AlCl3 administrations resulted in a general decrease (to 40-70% of the control values) in the specific l-[3H]nicotine binding, involving all brain areas studied. The specific (-)-[3H]quinuclidinyl benzilate binding was reduced (to 40-60% of the control values) only after 25 days of Al treatment. Al-G and AlCl3 were equivalent in eliciting these reductions in vitro studies revealed different alterations of the cholinergic system in response to Al treatment. No changes were observed either in choline acetyltransferase activity or in cholinergic receptor bindings. Both Al-G and Al2(SO4)3 treatments, however, exhibited a biphasic effect on the acetylcholinesterase activity. At low Al concentrations (10(-8)-10(-6) M), the activity was slightly increased, whereas at higher concentrations (10(-6)-10(-4) M), it was inhibited by a maximum of 25% as compared to the controls. Thus, these cholinotoxic effects are probably due not to a direct interaction between the metal and the cholinergic marker proteins, but rather to a manifestation and consequence of its neurodegenerative effects.  相似文献   

11.
Synaptosomes prepared from freshly obtained human cerebral cortex and labeled with [3H]choline have been used to investigate the modulation of [3H]acetylcholine ([3H]ACh) release by 5-hydroxytryptamine (5-HT). The Ca(2+)-dependent release of [3H]-ACh occurring when synaptosomes were exposed in superfusion to 15 mM KCl was inhibited by 5-HT (0.01-1 microM) in a concentration-dependent manner. The effect of 5-HT was mimicked by 1-phenylbiguanide, a 5-HT3 receptor agonist, but not by 8-hydroxy-2-(di-n-propylamino)tetralin, a 5-HT1A receptor agonist. The 5-HT3 receptor antagonists tropisetron and ondansetron blocked the effect of 5-HT, whereas spiperone and ketanserin were ineffective. It is suggested that cholinergic axon terminals in the human cerebral cortex possess 5-HT receptors that mediate inhibition of ACh release and appear to belong to the 5-HT3 type.  相似文献   

12.
Selected cholinergic markers (choline acetyltransferase, acetylcholinesterase, muscarinic acetylcholine receptor, high-affinity choline uptake) were studied in the hindlimb representation areas of the rat somatosensory cortex and within the visual cortex 1 to 63 days after unilateral transection of the sciatic nerve. In the contralateral somatosensory cortex, peripheral deafferentation resulted in a significant reduction of choline acetyltransferase activity (by 15%) 3 days after sciatic nerve injury, and in a significant reduction of high-affinity choline uptake (by 30%) 1 day after nerve transection, in comparison to untreated control rats. Investigations in individual cortical layers revealed that the decrease of both choline acetyltransferase activity and high-affinity choline uptake sites was mainly due to reductions in cortical layer V. Acetylcholinesterase activity and [3H]quinuclidinyl benzilate binding to muscarinic acetylcholine receptors were not affected by unilateral transection of the sciatic nerve. In the ipsilateral somatosensory cortex, as well as in the visual cortex at both cortical hemispheres, no significant changes in the cholinergic parameters studied could be detected. The data indicate that peripheral deafferentation of the somatosensory cortex results in a transient change of presynaptic cholinergic parameters within the affected somatosensory area as early as 1 to 3 days after the lesion; thus, they emphasize the involvement of cholinergic mechanisms in cortical reorganizational events.  相似文献   

13.
Selected cholinergic markers (choline acetyltransferase, acetylcholinesterase, muscarinic acetylcholine receptor, high-affinity choline uptake) were studied in the hindlimb representation areas of the rat somatosensory cortex and within the visual cortex 1 to 63 days after unilateral transection of the sciatic nerve. In the contralateral somatosensory cortex, peripheral deafferentation resulted in a significant reduction of choline acetyltransferase activity (by 15%) 3 days after sciatic nerve injury, and in a significant reduction of high-affinity choline uptake (by 30%) 1 day after nerve transection, in comparison to untreated control rats. Investigations in individual cortical layers revealed that the decrease of both choline acetyltransferase activity and high-affinity choline uptake sites was mainly due to reductions in cortical layer V. Acetylcholinesterase activity and [3H]quinuclidinyl benzilate binding to muscarinic acetylcholine receptors were not affected by unilateral transection of the sciatic nerve. In the ipsilateral somatosensory cortex, as well as in the visual cortex at both cortical hemispheres, no significant changes in the cholinergic parameters studied could be detected. The data indicate that peripheral deafferentation of the somatosensory cortex results in a transient change of presynaptic cholinergic parameters within the affected somatosensory area as early as 1 to 3 days after the lesion; thus, they emphasize the involvement of cholinergic mechanisms in cortical reorganizational events.  相似文献   

14.
This study aimed at comparing the binding characteristics of [3H]ketanserin, a high-affinity serotonin 2A (5-HT2A) receptor antagonist, in the prefrontal cortex, hippocampus and striatum of human brain post-mortem. The results indicated the presence of a single population of binding sites in all the regions investigated, with no statistical difference in maximum binding capacity (Bmax) or dissociation constant (Kd) values. The pharmacological profile of [3H]ketanserin binding was consistent with the labeling of the 5-HT2A receptor, since it revealed a competing drug potency ranking of ketanserin = spiperone > clozapine = haloperidol > methysergide > mesulergine > 5-HT. In conclusion, the 5-HT2A receptor, as labeled by [3H]ketanserin, would seem to consist of a homogenous population of binding sites and to be equally distributed in human prefronto-cortical, limbic and extrapyramidal structures.  相似文献   

15.
The S1 Percoll procedure, devised empirically for cortical tissue, provides highly purified, functionally viable synaptosomes on a four-step Percoll gradient. Here, for the first time, the procedure has been applied to rat hippocampus, and the gradient fractions have been analysed with respect to cholinergic markers and the synaptosomal index, lactate dehydrogenase. The presynaptic cholinergic markers choline acetyltransferase and [3H]choline uptake were most enriched in fraction 4. In contrast, acetylcholinesterase activity was broadly distributed across the gradient, consistent with the separation of synaptic plasma membranes (in fractions 1 and 2) from synaptosomes (in fractions 3 and 4). This is supported by the recovery of muscarinic binding sites labelled with [3H]quinuclidinylbenzilate in fractions 1 and 2. (-)-[3H]-Nicotine binding sites, however, were most enriched in fraction 4, consistent with their predominantly presynaptic localisation in the CNS. These results demonstrate the applicability of the S1 Percoll method to discrete brain regions for the recovery of homogeneous and viable synaptosome fractions. The separation of presynaptic terminals from post-synaptic membranes is a further advantage of this technique.  相似文献   

16.
1-[2-(4-Aminophenyl)ethyl]-4-(3-trifluoromethylphenyl)piperazine (PAPP) inhibits [3H]5-hydroxytryptamine (5-HT, serotonin) binding to 5-HT1A and 5-HT1B sites in rat brain with apparent equilibrium dissociation constants (KD) of 2.9 and 328 nM, respectively. [3H]PAPP was synthesized, its binding to central serotonin receptors was examined, and its potential usefulness as a 5-HT1A receptor radioligand was evaluated. With either 10 microM 5-HT or 1 microM 8-hydroxy-2-(di-n-propylamino)tetralin to define nonspecific binding, [3H]PAPP bound to a single class of sites in rat cortical membranes with a KD of 1.6 nM and a maximal binding density (Bmax) of 162 fmol/mg of protein. d-Lysergic acid diethylamide and 5-HT, two nonselective inhibitors of [3H]5-HT binding, displaced 1 nM [3H]PAPP with a potency that matched their affinity for 5-HT1 receptors. Spiperone and 8-hydroxy-2-(di-n-propylamino)tetralin, two compounds that discriminate [3H]5-HT binding to 5-HT1A and 5-HT1B sites, inhibited [3H]PAPP binding in accordance with their much higher affinities for the 5-HT1A receptor subtype. Furthermore, the ability of N-(m-trifluoromethylphenyl)piperazine and ketanserin to inhibit [3H]PAPP binding reflected their low affinities for the 5-HT1A receptor. Several nonserotonergic compounds were also found to be relatively poor displacers of [3H]PAPP binding. The regional distribution of serotonin-sensitive [3H]PAPP sites correlated with the densities of 5-HT1A receptors in the cortex, hippocampus, corpus striatum, and cerebellum of the rat. These results indicate that [3H]PAPP binds selectively and with high affinity to 5-HT1A receptor sites in rat brain.  相似文献   

17.
We have recently reported on the differential alterations of various cholinergic markers in cortical and subcortical regions in Alzheimer's disease (AD). The main purpose of the present study was to determine if cholinergic deficits observed in patients with AD are unique to this disorder or can be generalized to others such as idiopathic Parkinson's disease (PD) and PD with Alzheimer-type dementia (PD/AD). Muscarinic M1, M2, and nicotinic receptor binding parameters (KD and Bmax) were determined in various cortical and subcortical areas using selective radioligands ([3H]pirenzepine, [3H]AF-DX 116, and N[3H]methylcarbamylcholine). Choline acetyltransferase activity was also determined as a marker of the integrity of cholinergic innervation. Alterations of cholinergic markers are comparable in cortical areas in AD, PD, and PD/AD brains. In frontal and temporal cortices, as well as in the hippocampus, choline acetyltransferase activity and binding capacities of M2 and nicotinic binding sites are similarly decreased in these three disorders compared with age-matched control values. M1 receptor binding parameters are not significantly modified in cortical areas in patients with these disorders. In contrast, important differences between AD and PD brain tissues are found in subcortical areas such as the striatum and the thalamus. The density of M1 sites is significantly increased in striatal areas only in patients with AD, whereas densities of nicotinic sites are decreased in thalamus and striatum in PD and PD/AD, but not AD, brain tissues. The binding capacity of M2 sites is apparently unchanged in subcortical areas in all three disorders, although tendencies toward reductions are observed in the striatum of PD and PD/AD patients. Thus, although comparable alterations of various cholinergic markers are observed in cortical areas in the three neurological disorders investigated in the present study, important differences are seen in subcortical areas. This may be relevant to the respective etiological and clinical profiles of AD and PD.  相似文献   

18.
Putative nicotine receptors in the human cerebral cortex were characterized with L-[3H]nicotine, L-[3H]Nicotine binding was enhanced by the addition of Ca2+ and abolished in the presence of Na3EDTA. Association and dissociation of the ligand were rapid at 25 degrees C with t1/2 values of 2 and 3 min, respectively. Saturation binding analysis revealed an apparent single class of sites with a dissociation constant of 5.6 nM and a Hill coefficient of 1.05. There was no effect of postmortem interval on the density of binding sites assayed up to 24 h in rat frontoparietal cortex. Nicotine binding in human cortical samples was also unaltered by increasing sampling delay. In human cortical membranes, binding site density decreased with normal aging. Receptor affinity and concentration in samples of frontal cortex (Brodmann area 10) from patients with Alzheimer's disease were comparable to age-matched control values. Samples of infratemporal cortex (Brodmann area 38) from patients with Alzheimer's disease had a 50% reduction in the number of L-[3H]nicotine sites. Choline acetyltransferase activity was significantly decreased in both cortical areas. Enzyme activities in the temporal pole were reduced to 20% of control values. These data indicate that postsynaptic nicotine receptors are spared in the frontal cortex in Alzheimer's disease. In the infratemporal cortex, significant numbers of receptors remain despite the severe reduction in choline acetyltransferase activity. Replacement therapy directed at these sites may be warranted in Alzheimer's disease.  相似文献   

19.
Nicotinic cholinergic receptor binding sites labeled by [3H]acetylcholine were measured in the cerebral cortices, thalami, striata, and hypothalami of rats lesioned by intraventricular injection of either 6-hydroxydopamine or 5, 7-dihydroxytryptamine. In addition, [3H]acetylcholine binding sites were measured in the cerebral cortices of rats lesioned by injection of ibotenic acid into the nucleus basalis magnocellularis. [3H]Acetylcholine binding was significantly decreased in the striata and hypothalami of both 6-hydroxydopamine- and 5,7-dihydroxytryptamine-lesioned rats. There was no change in binding in the cortex or thalamus by either lesion. Ibotenic acid lesions of the nucleus basalis magnocellularis, which projects cholinergic axons to the cortex, did not alter [3H]acetylcholine binding. These results provide evidence for a presynaptic location of nicotinic cholinergic binding sites on catecholamine and serotonin axons in the striatum and hypothalamus.  相似文献   

20.
CHOLINE: SELECTIVE ACCUMULATION BY CENTRAL CHOLINERGIC NEURONS   总被引:20,自引:8,他引:12  
Abstract— Most of the cholinergic input to the hippocampus was destroyed by placement of lesions in the medial septal area. In animals with such lesions we found that hippocampal ChAc activity was reduced by 85–90% and endogenous acetylcholine levels were reduced by more than 80 %. When hippocampal synaptosomes from animals with lesions were incubated with [3H]choline at concentrations of 7.5 nm, 1 μm and 10 μm there was approximately a 60 % reduction in the uptake of [3H]choline, suggesting that cholinergic nerve endings were mainly responsible for [3H]choline uptake. At 0.1 mm concentrations of [3H]choline, there was only a 25 % reduction of choline uptake, suggesting that at higher concentrations of choline there was more nonspecific uptake. The uptake of radiolabelled tryptophan, glutamate and GABA were only slightly or not at all affected by the lesions. There was a significant reduction of uptake of radiolabelled serotonin and norepinephrine, since known monoaminergic tracts were disrupted. Choline uptake was reduced only in brain regions in which cholinergic input was interrupted (i.e. the cerebral cortex and hippocampus) and remained unchanged in other regions (i.e. the cerebellum and striatum). The time course of the reduction in choline uptake was similar to that of the reductions in ChAc activity and endogenous ACh levels; there was no decrease at 1 day, a significant decrease at 2 days, and the maximal decrease at 4 days postlesion. There was a close correlation among choline uptake, ChAc activity and ACh levels in the four brain regions examined (i.e. the striatum, cerebral cortex, hippocampus and cerebellum). Our results suggest that when hippocampal synaptosomes (and perhaps synaptosomes from other brain areas as well) are incubated in the presence of choline, at concentrations of 10 μm m or lower, then cholinergic nerve endings are responsible for the bulk of the choline accumulated by the tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号