首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
2.
植物进化发育生物学的形成与研究进展   总被引:2,自引:0,他引:2  
植物进化发育生物学是最近十几年来才兴起的一门学科, 它是进化发育生物学的主要分支之一。进化发育生物学的产生经历了进化生物学与胚胎学、遗传学和发育生物学的三次大的综合, 其历史可追溯到19世纪初冯.贝尔所创立的比较胚胎学。相关研究曾沉寂了近一个世纪, 直到20世纪80年代早期, 动物中homeobox基因被发现, 90年代初花发育的 ABC模型被提出, 加之对发育相关基因研究的不断深入, 才使基因型与表型联系了起来, 进而促进了进化发育生物学的飞速发展。目前进化发育生物学已成为21世纪生命科学领域的研究热点之一。本文详细阐述了进化发育生物学产生和发展的历程, 综述了最近十几年来植物进化发育生物学的主要研究进展。文中重点介绍了与植物发育密切相关的MADS-box基因在植物各大类群中的研究现状, 讨论了植物进化发育生物学领域的研究成果对花被演化、花对称性以及叶的进化等重要问题的启示。  相似文献   

3.
植物进化发育生物学的形成与研究进展   总被引:2,自引:0,他引:2  
植物进化发育生物学是最近十几年来才兴起的一门学科,它是进化发育生物学的主要分支之一。进化发育生物学的产生经历了进化生物学与胚胎学、遗传学和发育生物学的三次大的综合,其历史可追溯到19世纪初冯.贝尔所创立的比较胚胎学。相关研究曾沉寂了近一个世纪,直到20世纪80年代早期,动物中homeobox基因被发现,90年代初花发育的ABC模型被提出,加之对发育相关基因研究的不断深入,才使基因型与表型联系了起来,进而促进了进化发育生物学的飞速发展。目前进化发育生物学已成为21世纪生命科学领域的研究热点之一。本文详细阐述了进化发育生物学产生和发展的历程,综述了最近十几年来植物进化发育生物学的主要研究进展。文中重点介绍了与植物发育密切相关的MADS-box基因在植物各大类群中的研究现状,讨论了植物进化发育生物学领域的研究成果对花被演化、花对称性以及叶的进化等重要问题的启示。  相似文献   

4.
Most studies in evolutionary developmental biology focus on large-scale evolutionary processes using experimental or molecular approaches, whereas evolutionary quantitative genetics provides mathematical models of the influence of heritable phenotypic variation on the short-term response to natural selection. Studies of morphological integration typically are situated in-between these two styles of explanation. They are based on the consilience of observed phenotypic covariances with qualitative developmental, functional, or evolutionary models. Here we review different forms of integration along with multiple other sources of phenotypic covariances, such as geometric and spatial dependencies among measurements. We discuss one multivariate method [partial least squares analysis (PLS)] to model phenotypic covariances and demonstrate how it can be applied to study developmental integration using two empirical examples. In the first example we use PLS to study integration between the cranial base and the face in human postnatal development. Because the data are longitudinal, we can model both cross-sectional integration and integration of growth itself, i.e., how cross-sectional variance and covariance is actually generated in the course of ontogeny. We find one factor of developmental integration (connecting facial size and the length of the anterior cranial base) that is highly canalized during postnatal development, leading to decreasing cross-sectional variance and covariance. A second factor (overall cranial length to height ratio) is less canalized and leads to increasing (co)variance. In a second example, we examine the evolutionary significance of these patterns by comparing cranial integration in humans to that in chimpanzees.  相似文献   

5.
结构植物学由植物解剖学发展而来,是植物学的一个重要分支学科.本文根据其近代的发展,分别就植物发育解剖学向植物发育生物学的发展、植物比较解剖学向植物系统发育生物学的发展,以及环境生态结构植物学三个主要部分简要介绍了50年来在我国的发展,并对它们的发展趋势进行了预测.  相似文献   

6.
结构植物学在中国的五十年发展   总被引:3,自引:0,他引:3  
结构植物学由植物解剖学发展而来 ,是植物学的一个重要分支学科。本文根据其近代的发展 ,分别就植物发育解剖学向植物发育生物学的发展、植物比较解剖学向植物系统发育生物学的发展 ,以及环境生态结构植物学三个主要部分简要介绍了 5 0年来在我国的发展 ,并对它们的发展趋势进行了预测  相似文献   

7.
The next-generation intelligent Flora (iFlora) is designed to integrate current botanical knowledge, with molecular biology information and computer technology. The most important and urgent task for iFlora development is to search for an approach to incorporate all useful data into an accurate, most up-to-date and complete information database for a taxon, and hierarchically classify these data to meet different demands from iFlora users, to provide the user an authentic, scientific research based platform for sharing botanic knowledge, and associated valuable information for the benefit of national economy and quality of our life. In this study, we summarized the innovations, hierarchical classifications and functions of data for iFlora, in contrast of that of the previous Floras and the frequently used digital plant databases or eFloras. The innovation and essential of data compilation and integration of the iFlora was emphasized as intelligent assembly of data from DNA barcodes, key morphological characters, digital images and molecular phylogenetics with the support of computer techniques to achieve intelligent plant identification. We attempted to integrate previously assembled research data into the iFlora, and list three hierarchically classified data and their functions, and related issues, with the genus Gaultheria and one of its species, G.hookeri, as test case.  相似文献   

8.
结合现代植物学、DNA测序与信息等关键技术而产生的新一代智能植物志(iFlora),其研发中最首要和迫切的任务之一就是如何将前沿、准确和完善的植物数据信息进行特色整合及智能化处理,为用户提供一个客观而科学的,具理论和实际应用为一体的植物学知识共享平台,并有效地为国民经济发展提供有价值的植物资源信息渠道。本文简要介绍了与传统植物志和目前常用的电子植物志数据库相区别的iFlora数据信息的分级内容、特点和功能,并强调了作为iFlora的核心数据信息,即用于物种鉴定的植物DNA条形码、关键形态学分类特征、植物图像等识别数据,以及分子系统发育数据等。以杜鹃花科(Ericaceae)白珠树属(Gaultheria)和其属下红粉白珠(G.hookeri)为例,介绍了iFlora采用的三类数据(核心数据、基础数据和拓展数据)构成的三级信息及其功能,同时探讨了信息整合时可能遇到的问题。  相似文献   

9.
Developmental system drift and flexibility in evolutionary trajectories   总被引:9,自引:0,他引:9  
SUMMARY The comparative analysis of homologous characters is a staple of evolutionary developmental biology and often involves extrapolating from experimental data in model organisms to infer developmental events in non-model organisms. In order to determine the general importance of data obtained in model organisms, it is critical to know how often and to what degree similar phenotypes expressed in different taxa are formed by divergent developmental processes. Both comparative studies of distantly related species and genetic analysis of closely related species indicate that many characters known to be homologous between taxa have diverged in their morphogenetic or gene regulatory underpinnings. This process, which we call "developmental system drift" (DSD), is apparently ubiquitous and has significant implications for the flexibility of developmental evolution of both conserved and evolving characters. Current data on the population genetics and molecular mechanisms of DSD illustrate how the details of developmental processes are constantly changing within evolutionary lineages, indicating that developmental systems may possess a great deal of plasticity in their responses to natural selection.  相似文献   

10.
11.
Recent rapid progress in plant science and biotechnology in China demonstrates that China’s stronger support for funding in plant research and development (R&D) has borne fruit. Chinese groups have contributed major advances in a range of fields, such as rice biology, plant hormone and developmental biology, genomics and evolution, plant genetics and epigenetics, as well as plant biotechnology. Strigolactone studies including those identifying its receptor and dissecting its complex structure and signaling are representative of the recent researches from China at the forefront of the field. These advances are attributable in large part to interdisciplinary studies among scientists from plant science, chemistry, bioinformatics, structural biology, and agronomy. The platforms provided by national facilities facilitate this collaboration. As well, efficient restructuring of the top–down organization of state programs and free exploration of scientists’ interests have accelerated achievements by Chinese researchers. Here, we provide a general outline of China’s progress in plant R&D to highlight fields in which Chinese research has made significant contributions.  相似文献   

12.
《Fungal Biology Reviews》2018,32(4):249-264
Fungal model species have contributed to many aspects of modern biology, from biochemistry and cell biology to molecular genetics. Nevertheless, only a few genes associated with morphological development in fungi have been functionally characterized in terms of their genetic or molecular interactions. Evolutionary developmental biology in fungi faces challenges from a lack of fossil records and unresolved species phylogeny, to homoplasy associated with simple morphology. Traditionally, reductive approaches use genetic screens to reveal phenotypes from a large number of mutants; the efficiency of these approaches relies on profound prior knowledge of the genetics and biology of the designated development trait—knowledge which is often not available for even well-studied fungal model species. Reductive approaches become less efficient for the study of developmental traits that are regulated quantitatively by more than one gene via networks. Recent advances in genome-wide analysis performed in representative multicellular fungal models and non-models have greatly improved upon the traditional reductive approaches in fungal evo-devo research by providing clues for focused knockout strategies. In particular, genome-wide gene expression data across developmental processes of interest in multiple species can expedite the advancement of integrative synthetic and systems biology strategies to reveal regulatory networks underlying fungal development.  相似文献   

13.
AIMS: This Botanical Briefing reviews how the integration of palaeontology, geochemistry and developmental biology is providing a new mechanistic framework for interpreting the 40- to 50-million-year gap between the origination of vascular land plants and the advent of large (megaphyll) leaves, a long-standing puzzle in evolutionary biology. SCOPE: Molecular genetics indicates that the developmental mechanisms required for leaf production in vascular plants were recruited long before the advent of large megaphylls. According to theory, this morphogenetic potential was only realized as the concentration of atmospheric CO2 declined during the late Palaeozoic. Surprisingly, plants effectively policed their own evolution since the decrease in CO2 was brought about as terrestrial floras evolved accelerating the rate of silicate rock weathering and enhancing sedimentary organic carbon burial, both of which are long-term sinks for CO2. CONCLUSIONS: The recognition that plant evolution responds to and influences CO(2) over millions of years reveals the existence of an intricate web of vegetation feedbacks regulating the long-term carbon cycle. Several of these feedbacks destabilized CO2 and climate during the late Palaeozoic but appear to have quickened the pace of terrestrial plant and animal evolution at that time.  相似文献   

14.
Callose (β-1,3-glucan) is a linear plant polysaccharide that plays an important role in different stages of individual development as well as in defense against unfavourable environmental factors. In plants, it is synthesized by callose synthases, and degraded by β-1,3-glucanases. This review summarizes the current knowledge on structure and function of callose in plant tissue as well as its importance under stress conditions. Despite the considerable progress in clarifying the role of this polysaccharide in plants that has been achieved during the last period, many questions regarding its synthesis or involvement in defense responses still remain to be solved. A more in-depth understanding of callose function in plants will require integration of different experimental approaches from the field of chemistry, cell biology, genetics as well as systemic biology.  相似文献   

15.
16.
The systems genetics is an emerging discipline that integrates high-throughput expression profiling technology and systems biology approaches for revealing the molecular mechanism of complex traits, and will improve our understanding of gene functions in the biochemical pathway and genetic interactions between biological molecules. With the rapid advances of microarray analysis technologies, bioinformatics is extensively used in the studies of gene functions, SNP–SNP genetic interactions, LD block–block interactions, miRNA–mRNA interactions, DNA–protein interactions, protein–protein interactions, and functional mapping for LD blocks. Based on bioinformatics panel, which can integrate “-omics” datasets to extract systems knowledge and useful information for explaining the molecular mechanism of complex traits, systems genetics is all about to enhance our understanding of biological processes. Systems biology has provided systems level recognition of various biological phenomena, and constructed the scientific background for the development of systems genetics. In addition, the next-generation sequencing technology and post-genome wide association studies empower the discovery of new gene and rare variants. The integration of different strategies will help to propose novel hypothesis and perfect the theoretical framework of systems genetics, which will make contribution to the future development of systems genetics, and open up a whole new area of genetics.  相似文献   

17.
The moss Physcomitrella patens has become a powerful model system in modern plant biology. Highly standardized cell culture techniques, as well as the necessary tools for computational biology, functional genomics and proteomics have been established. Large EST collections are available and the complete moss genome will be released soon. A simple body plan and the small number of different cell types in Physcomitrella facilitate the study of developmental processes. In the filamentous juvenile moss tissue, developmental decisions rely on the differentiation of single cells. Developmental steps are controlled by distinct phytohormones and integration of environmental signals. Especially the phytohormones auxin, cytokinin, and abscisic acid have distinct effects on early moss development. In this article, we review current knowledge about phytohormone influences on early moss development in an attempt to fully unravel the complex regulatory signal transduction networks underlying the developmental decisions of single plant cells in a holistic systems biology approach.  相似文献   

18.
Rice plant development: from zygote to spikelet   总被引:27,自引:0,他引:27  
Rice is becoming a model plant in monocotyledons and a model cereal crop. For better understanding of the rice plant, it is essential to elucidate the developmental programs of the life cycle. To date, several attempts have been made in rice to categorize the developmental processes of some organs into substages. These studies are based exclusively on the morphological and anatomical viewpoints. Recent advancement in genetics and molecular biology has given us new aspects of developmental processes. In this review, we first describe the phasic development of the rice plant, and then describe in detail the developmental courses of major organs, leaf, root and spikelet, and specific organs/tissues. Also, for the facility of future studies, we propose a staging system for each organ.  相似文献   

19.
The transformation of embryology to developmental biology has been linked to the introduction of experimental approaches from molecular genetics to the study of development. This paper pursues this theme by analyzing the tools molecular biologists, moving from phage and bacterial genetics to the study of development in higher organisms, brought to their new field of investigations. The paper focuses on Sydney Brenner's move from molecular genetics to developmental biology. His attempt to turn the nematode worm Caenorhabditis elegans into a new tool for the study of development included a vast and ever expanding mapping program. Worm workers themselves did not distinguish sharply between mapping on the cellular, chromosomal or molecular level. Mapping, the paper argues, or more generally 'analytical/comparative' next to 'experimentalist' approaches (Pickstone) were not only part and parcel of Brenner's strategy to 'molecularize' the study of development, but also played a crucial role in 'classical' molecular biology.  相似文献   

20.
随着现代生物学的发展,全球范围内建立了大量的生物学数据共享中心,同时,在生物学发展的带动下,植物遗传资源数据变得更为复杂、异构化和海量。本文在分析国内外几大著名的数据整合共享中心的基础上,简要介绍了本体论的概念及其在生物学领域中的研究现状,提出了基于生物本体论将植物遗传数据、数据挖掘工具、科技文献和科技交流进行整合的设想,并对数据整合需要考虑的几个问题进行了讨论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号