首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The translocation of the alpha subunits of Gs from the membrane to the cytosol by iloprost, a stable prostacyclin analogue, was studied in mouse mastocytoma P-815 cells. In the presence of guanosine 5'-O-(thiotriphosphate) (GTP gamma S), iloprost stimulated the adenylate cyclase activity, caused the release of both 42- and 45-kDa proteins reactive with the anti Gs alpha carboxyl-terminal antibody, RM/1, from the membrane and attenuated cholera toxin-catalyzed ADP-ribosylation of the 42- and 45-kDa proteins in the membrane. The iloprost-stimulated adenylate cyclase activity and release of Gs alpha from the membrane were markedly suppressed by RM/1. Cholera toxin treatment also stimulated the adenylate cyclase activity and release of Gs alpha from the membrane, and iloprost synergistically potentiated these actions of cholera toxin. In mastocytoma cells, iloprost induced the translocation of both 42- and 45-kDa Gs alpha from the membrane to the cytosol, 45-kDa Gs alpha remaining in the cytosol for a longer time than 42- kDa Gs alpha. Whereas 42-kDa Gs alpha in the cytosol was eluted at the position of Mr = approximately 40,000 45-kDa Gs alpha was eluted at the position of Mr = approximately 120,000 from a Superose 12 gel filtration column. In contrast, both 42- and 45-kDa Gs alpha released in vitro from the membrane by iloprost plus GTP gamma S were eluted at the position of Mr = approximately 40,000, but only 45-kDa Gs alpha was eluted at the position of Mr = approximately 120,000 when it was incubated with cytosol. These results taken together demonstrate that iloprost induces the translocation of both 42- and 45-kDa Gs alpha from the membrane to the cytosol and that only the 45-kDa Gs alpha released exists in the cytosol as a soluble complex with unidentified component(s) in mastocytoma cells.  相似文献   

2.
Proteolytic experiments performed on transducin and Go alpha subunit strongly suggest that the amino-terminal residues of the alpha chain are involved in the interaction with beta gamma subunits. To test the possibility that the same region in Gs may fulfill a similar function, we introduced a deletion in the amino-terminal domain of Gs alpha. The properties of the wild type and the deleted alpha chains were characterized on in vitro translated proteins or after reconstitution of cyc- membranes by in vitro-translated alpha subunits. The mutant (delta 2-29) Gs alpha could still bind guanosine 5'-3-O-(thio)triphosphate, as revealed by its resistance to trypsin proteolysis and was still able to interact with the membrane. However, (delta 2-29) Gs alpha was not ADP-ribosylated by cholera toxin. In contrast to Gs alpha, addition of beta gamma subunits did not increase the rate of sedimentation of (delta 2-29) Gs alpha in sucrose gradients. Binding experiments on reconstituted membranes showed that the coupling to beta-adrenergic receptors was very low with (delta 2-29) Gs alpha. Finally, the mutant did not restore activation of adenylate cyclase of cyc- membranes. We propose that the primary functional defect is the loss of interaction with beta gamma subunits, which secondarily impairs beta gamma-dependent properties such as receptor coupling and cholera toxin-catalyzed ADP-ribosylation. However, it remains to be established that the lack of adenylate cyclase activation also results from this impaired interaction with beta gamma subunits.  相似文献   

3.
Purification of the catalyst of adenylate cyclase   总被引:12,自引:0,他引:12  
The catalytic moiety of hormone-sensitive adenylate cyclase has been purified from bovine brain. It is isolated largely without its guanine nucleotide-binding regulatory protein, Gs, by affinity chromatography on 7-O-hemisuccinyldeacetylforskolin-agarose. It appears to be a single polypeptide which migrates on sodium dodecyl sulfate-polyacrylamide gels with an apparent Mr of approximately 120,000. When subjected to electrophoresis on gradient (5-10%) sodium dodecyl sulfate-polyacrylamide gels, it displays a larger apparent Mr of 150,000. The adenylate cyclase activity of the preparation can be stimulated by the addition of Gs, forskolin, or calcium-calmodulin. The preparation has been reconstituted with purified beta-adrenergic receptors and Gs to form a hormone-stimulated adenylate cyclase system (May, D., Ross, E.M., Gilman, A.G., and Smigel, M.D. (1985) J. Biol. Chem. 260, 15829-15833). In contrast to its stimulation by Gs, inhibition by the alpha subunits of Gi and Go, G proteins known to be coupled to inhibitory receptors (Sternweis, P., and Florio, V. (1985) J. Biol. Chem. 260, 3477-3483), is not seen. Preparations of adenylate cyclase show varying degrees of inhibition by added G protein beta . gamma subunit. This inhibition can be explained as reflecting a variable, small (under 5%) contamination of the preparation by Gs alpha which would be deactivated by complexing with the added beta . gamma subunit.  相似文献   

4.
1. Rat isolated fat-cells were coated with rabbit anti-(rat erythrocyte) antibody and incubated with fresh guinea-pig serum for 25 min at 37 degrees C, which resulted in a more than 95% release of the cytosolic enzyme lactate dehydrogenase. 2. Under these conditions fragmentation of the plasma membrane was examined by following the plasma-membrane markers 5'-nucleotidase, adrenaline-sensitive adenylate cyclase and membrane-bound rabbit immunoglobulin G through a differential-centrifugation fractionation procedure. 3. Approx. 50% of the plasma-membrane markers remained associated with triacylglycerol. Of the remainder more than half was pelleted by centrifugation at 10 000 g for 30 min. 4. The 10 000 g supernatant was fractionated by centrifugation on a sucrose density gradient (15-50%, w/w). This procedure resulted in the production of two visible white bands on the density gradient. The bands consisted of vesicles derived from the plasma membrane, since they coincided with peaks of 5'-nucleotidase activity, contained membrane-bound immunoglobulin G and the denser one had adenylate cyclase activity. The phospholipid and protein contents of the vesicles were determined and compared with those in purified plasma membrane. 5. It is suggested that complement-mediated lysis of rat fat-cells caused the production of plasma-membrane vesicles that differ in composition from the whole plasma membrane.  相似文献   

5.
An antibody (RM) raised against the carboxyl-terminal decapeptide of the alpha subunit of the stimulatory guanine nucleotide regulatory protein (Gs alpha) has been used to study the interaction of Gs alpha with bovine brain adenylate cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1]. RM antibody immunoprecipitated about 60% of the solubilized adenylate cyclase preactivated with either GTP-gamma-S or AlF4-. In contrast, RM antibody immunoprecipitated about 5% of the adenylate cyclase not preactivated (control) and 15% of the adenylate cyclase pretreated with forskolin. Adenylate cyclase solubilized from control membranes or GTP-gamma-S preactivated membranes was partially purified by using forskolin-agarose affinity chromatography. The amount of Gs alpha protein in the partially purified preparations was determined by immunoblotting with RM antibody. There was 3-fold more Gs alpha detected in partially purified adenylate cyclase from preactivated membranes than in the partially purified adenylate cyclase from control membranes. Partially purified adenylate cyclase from preactivated membranes was immunoprecipitated with RM antibody and the amount of adenylate cyclase activity immunoprecipitated (65% of total) corresponded to the amount of Gs alpha protein immunoprecipitated. Only 15% of the partially purified adenylate cyclase from control membranes was immunoprecipitated. The presence of other G proteins in the partially purified preparations of adenylate cyclase was investigated by using specific antisera that detect Go alpha, Gi alpha, and G beta. The G beta protein was the only subunit detected in the partially purified preparations of adenylate cyclase and the amount of G beta was about the same in adenylate cyclase from preactivated membranes and from control membranes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
7.
NG108-15 cells were exposed in culture to 1 microM [D-Ala2,D-Leu5]enkaphalin (DADLE) for 17 h. This treatment increased the maximum iloprost- and 5'-(N-ethylcarboxamido)adenosine-dependent activation of adenylate cyclase, as well as basal enzyme activity. In addition, there was an increase in the capacity of 5'-guanylylimidodiphosphate [Gpp(NH)p] to inhibit adenylate cyclase activity by direct interaction with the alpha-subunit of the Gi regulatory protein. A similar effect was observed if the cells were exposed to 10 microM carbachol. These treatments of NG108-15 cells did not alter the capacity of NaF to activate adenylate cyclase by direct interaction with Gs alpha. Exposure of NG108-15 cells to DADLE alone or DADLE plus carbachol had no effect on the capacity of pertussis toxin to ADP-ribosylate membrane proteins in these cells; neither was there any change in the activity of eukaryotic ADP-ribosyltransferase expressed in these cells. Under these conditions, the endogenous enzyme did not label any protein with a molecular mass similar to Gi alpha, 41 kDa. Treatment of the cells with DADLE or carbachol had no effect on the abundance of Gs alpha, Gi alpha, or G beta. The underlying mechanism for the changes in agonist-dependent stimulatory responses or Gpp(NH)p-dependent inhibition of adenylate cyclase remains obscure, but appears not to be mediated by eukaryotic ADP-ribosyltransferase activity or a change in the abundance of G proteins known to regulate adenylate cyclase.  相似文献   

8.
In an earlier study we demonstrated that epidermal growth factor (EGF) increases the cellular accumulation of cAMP in perfused rat hearts by stimulating the cardiac adenylate cyclase via a stimulatory GTP-binding protein (Nair, B. G., Rashed, H. M., and Patel, T. B. (1989) Biochem. J. 264, 563-571). Employing antiserum, CS1, generated against a synthetic decapeptide RMHLRQYELL representing the carboxyl terminus of Gs alpha, the involvement of Gs in mediating the effects of EGF on cardiac adenylate cyclase was further investigated. The CS1 antiserum specifically recognized two forms, (52 and 40 kDa) of Gs alpha in rat cardiac membranes; the 52 kDa being the predominant species. In functional assays of adenylate cyclase activity, the CS1 antiserum did not alter either aluminum fluoride- or forskolin-stimulated adenylate cyclase activity. Similarly, basal adenylate cyclase activity in the absence of guanyl-5'-yl imidodiphosphate (Gpp(NH)p) was also not altered by the CS1 antiserum. However, as compared with controls performed in the presence of non-immune serum, preincubation of cardiac membranes with the CS1 antiserum resulted in a concentration-dependent inhibition of Gpp(NH)p-, isoproterenol-, and EGF-stimulated activities. In experiments which monitored Gi function as the ability of different G(pp)NHp, (-)N6-(R-phenylisopropyl)adenosine and carbachol to inhibit forskolin-stimulated adenylate cyclase, CS1 antiserum by inhibiting Gs, increased the apparent activity of Gi. Overall, our data demonstrate that the CS1 antiserum can specifically inhibit Gs function and therefore the stimulation of adenylate cyclase by agonists whose actions are mediated by Gs. In this respect, the data presented here demonstrate that Gs is the G-protein involved in mediating EGF-elicited stimulation of cardiac adenylate cyclase. Additionally, the finding that CS1 antiserum can overcome the effects of Gpp(NH)p on Gs, but not Gi, suggests that the carboxyl-terminal region of Gs alpha is important in the interactions with GTP or its analogs.  相似文献   

9.
Complementary DNAs that encode two forms of the alpha subunit (Gs alpha) of the guanine nucleotide-binding protein responsible for stimulation of adenylate cyclase (Gs) have been inserted into plasmid vectors for expression in Escherichia coli. Following transformation of either of these plasmids into E. coli K38, Gs alpha accumulates to 0.4-0.8 mg/liter (approximately 0.1% of total protein), as judged by immunoblot analysis with specific antisera. Based on deduced amino acid sequence, the two cDNAs should encode proteins with molecular weights of 44,500 and 46,000, respectively (Robishaw, J.D., Smigel, M. D., and Gilman, A. G. (1986) J. Biol. Chem. 261, 9587-9590). Expression of these cDNAs in E. coli yields proteins that co-migrate on sodium dodecyl sulfate-polyacrylamide gels with the Gs alpha subunits from S49 lymphoma cell membranes, with apparent molecular weights of 45,000 and 52,000, respectively. Low levels of activity are detected in the 100,000 X g supernatant after lysis and fractionation of E. coli expressing either form of Gs alpha. Partial purification of Gs alpha from E. coli lysates yields preparations in which significant and stable activity can be assayed. Both forms of Gs alpha migrate through sucrose gradients as soluble, monodisperse species in the absence of detergent. As expressed in E. coli, both forms of Gs alpha can reconstitute isoproterenol-, guanine nucleotide-, and fluoride-stimulated adenylate cyclase activity in S49 cyc-cell membranes to approximately the same degree and can be ADP-ribosylated with [32P]NAD+ and cholera toxin. However, based on the specific activity of purified rabbit liver Gs, only 1-2% of the Gs alpha expressed in E. coli appears to be active. Incubation of partially purified fractions of recombinant Gs alpha with guanosine 5'-(3-O-thio)triphosphate and resolved beta gamma subunits isolated from purified bovine brain G proteins results in a 7-10-fold increase in Gs activity. Incubation of bovine brain beta gamma with recombinant Gs alpha also leads to a dramatic increase in observed levels of cholera toxin-catalyzed [32P]ADP-ribosylation.  相似文献   

10.
GTP-binding proteins which participate in signal transduction share a common heterotrimeric structure of the alpha beta gamma-type. In the activated state, the alpha subunit dissociates from the beta gamma complex but remains anchored in the membrane. The alpha subunits of several GTP-binding proteins, such as Go and Gi, are myristoylated at the amino terminus (Buss, J. E., S. M. Mumby, P. J. Casey, A. G. Gilman, and B. M. Sefton. 1987. Proc. Natl. Acad. Sci. USA. 84:7493-7497). This hydrophobic modification is crucial for their membrane attachment. The absence of fatty acid on the alpha subunit of Gs (Gs alpha), the protein involved in adenylate cyclase activation, suggests a different mode of anchorage. To characterize the anchoring domain of Gs alpha, we used a reconstitution model in which posttranslational addition of in vitro-translated Gs alpha to cyc- membranes (obtained from a mutant of S49 cell line which does not express Gs alpha) restores the coupling between the beta-adrenergic receptor and adenylate cyclase. The consequence of deletions generated by proteolytic removal of amino acid sequences or introduced by genetic removal of coding sequences was determined by analyzing membrane association of the proteolyzed or mutated alpha chains. Proteolytic removal of a 9-kD amino-terminal domain or genetic deletion of 28 amino-terminal amino acids did not modify the anchorage of Gs alpha whereas proteolytic removal of a 1-kD carboxyterminal domain abolished membrane interaction. Thus, in contrast to the myristoylated alpha subunits which are tethered through their amino terminus, the carboxy-terminal residues of Gs alpha are required for association of this protein with the membrane.  相似文献   

11.
Rabbit heart membranes possessing the adenylate cyclase activity were isolated and purified by extraction with high ionic strength solutions and centrifugation in the sucrose density gradient. It was shown that the membranes are characterized by a high percentage of cholesterol (molar ratio cholesterol/phospholipids is 0.24) and an increased activity of Na, K-ATPase, which suggests the localization of adenylate cyclase in the sarcolemma. During centrifugation in the sucrose density gradient the activities of andenylate cyclase and Na,K-ATPase are not separated. Treatment of heart sarcolemma with a 0.3% solution of lubrol WX results in 10--20% solubilization of adenylate cyclase. Purification of the enzyme in the membrane fraction is accompanied by a decrease in the activity of phosphodiesterase; however, about 2% of the heart diesterase total activity cannot be removed from the sarcolemma even after its treatment with 0.3% lubrol WX. Epinephrine and NaF activate adenylate cyclase without changing the pH dependence of the enzyme. The alpha-adrenergic antagonist phentolamine has no effect on the adenylate cyclase activation by catecholamines, glucagon and histamine; the beta-adrenergic antagonist alprenolol competitively inhibits the effects of isoproterenol, epinephrine and norepinephrine, having no effect on the enzyme activation by glucagon and histamine. There is no competition between epinephrine, glucagon and histamine for the binding site of the hormone; however, there may occur a competition between the hormone receptors for the binding to the enzyme. A combined action of several hormones on the membranes results in the averaging of their individual activating effects. When the hormones were added one after another, the extent of adenylate cyclase activation corresponded to that induced by the first hormone; the activation was insensitive to the effect of the second hormone added. It is assumed that the outer membrane of myocardium cells contains a adenylate cyclase and three types of receptors, each being capable to interact with the same form of enzyme. The activity of adenylate cyclase is determined by the type of the receptor, to which it is bound and by the amount of the enzyme-receptor complex.  相似文献   

12.
We have utilized purified reactants and cofactors to examine the form of the stimulatory guanine nucleotide-binding regulatory component (Gs) of adenylate cyclase that serves as a substrate for ADP-ribosylation by cholera toxin; we have also investigated some of the consequences of that covalent modification. Activation of Gs with nonhydrolyzable analogs of GTP, which causes dissociation of its subunits, completely inhibits the toxin-catalyzed covalent modification. However, this effect cannot be explained by subunit dissociation, since activation of Gs by fluoride is not inhibitory and ADP ribosylation of the alpha (45,000-Da) subunit of Gs proceeds equally well in the presence and absence of the beta (35,000-Da) subunit. ADP-ribosylation of the alpha subunit of Gs decreases its apparent affinity for the beta subunit; however, the affinity of alpha and ADP-ribosyl-alpha for GTP appear to be approximately the same. ADP-ribosylation of Gs thus promotes the dissociation of its alpha and beta subunits. This effect may account for or contribute to the activation of adenylate cyclase by cholera toxin.  相似文献   

13.
Cultured rat glioma C6 cells exfoliate membrane vesicles which have been termed 'exosomes' into the culture medium. The exosomes contained both stimulatory and inhibitory GTP-binding components of adenylate cyclase (the stimulatory, Gs, and the inhibitory, Gi, regulatory components) and beta-adrenergic receptors but were devoid of adenylate cyclase activity. It was therefore apparent that the catalytic component of adenylate cyclase was either not exfoliated or was inactivated during the exfoliation process. The presence of Gs or Gi in the exosomes was detected by ADP ribosylation using [alpha-32P]NAD in the presence of cholera or pertussis toxins, respectively. The exosomal concentration of each of the two components was estimated to be about one fifth of that of the cell membrane when expressed on a per mg protein basis. Exosomal Gs was almost as active as the membrane-derived Gs in its ability to reconstitute NaF- and guanine nucleotide-stimulated adenylate cyclase activity in membranes of S49 cyc- cells, which lack a functional Gs. The ability of exosomal Gs to reconstitute isoproterenol-stimulated activity, however, was much lower than that of membrane Gs. The density of beta-adrenergic receptors in the exosomes was much less than that found in the membranes. Although the exosomal receptors bound the antagonist iodocyanopindolol with the same affinity as receptors from the cell membrane, the affinity for the agonist isoproterenol was 13- to 18-fold lower in the exosomes. In addition, this affinity was not modulated by GTP in the exosomes. Thus, exfoliated beta-adrenergic receptors seem to be impaired in their ability to couple to and activate Gs. This was directly tested by coupling the receptors to a foreign adenylate cyclase using membrane fusion. The fusates were then assayed for agonist-stimulated activity. While significant stimulation of the acceptor adenylate cyclase was obtained using C6 membrane receptors, the exosomal receptors were completely inactive. Thus during exfoliation, there appear to be changes in the components of the beta-adrenergic-sensitive adenylate cyclase that results in a nonfunctional system in the exosomes.  相似文献   

14.
Treatment of platelets with a prostacyclin analogue, iloprost, decreased the cholera-toxin-induced ADP-ribosylation of membrane-bound Gs alpha (alpha-subunit of G-protein that stimulates adenylate cyclase; 42 kDa protein) and a cytosolic substrate (44 kDa protein) [Molina y Vedia, Reep & Lapetina (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 5899-5902]. This decrease is apparently not correlated with a significant change in the quantity of membrane Gs alpha, as detected by two Gs alpha-specific antisera. This finding contrasts with the suggestion in a previous report [Edwards, MacDermot & Wilkins (1987) Br. J. Pharmacol. 90, 501-510], indicating that iloprost caused a loss of Gs alpha from the membrane. Our evidence points to a modification in the ability of the 42 kDa protein to be ADP-ribosylated by cholera toxin. This modification of Gs alpha might be related to its ADP-ribosylation by endogenous ADP-ribosyltransferase activity. Here we present evidence showing that Gs alpha was ADP-ribosylated in platelets that had been electropermeabilized and incubated with [alpha-32P]NAD+. This endogenous ADP-ribosylation of Gs alpha is inhibited by nicotinamide and stimulated by iloprost.  相似文献   

15.
We have used the method of heavy isotope labeling to study the metabolic turnover of adenylate cyclase in a nonfusing muscle cell line, the BC3H1 cells. These cells contains an adenylate cyclase coupled to beta-adrenergic receptors and highly stimulated by forskolin, a potent activator of the enzyme. After transfer of the cells from normal medium to heavy medium (a medium containing heavy labeled amino acids, 2H, 13C, 15N), heavy isotope-labeled adenylate cyclase molecules progressively replace pre-existing light molecules. In sucrose gradient differential sedimentation, after a 5-day switch in heavy medium, the enzyme exhibited a higher mass (s = 8.40 +/- 0.03 S, n = 13) compared to the control enzyme (s = 7.40 +/- 0.04 S, n = 36). Indeed, the increase in the sedimentation coefficient of the heavy molecules was due to the synthesis of new molecules of adenylate cyclase labeled with heavy isotope amino acids since in the presence of cycloheximide, an inhibitor of protein synthesis, no change in the sedimentation pattern of the forskolin-stimulated adenylate cyclase occurred. After incorporation of heavy isotope amino acids in the adenylate cyclase molecules, the kinetics parameters of the enzyme (i.e. Km for ATP and EC50 for Mn2+ or Mg2+) did not change. However, adenylate cyclase from cells incubated with heavy medium exhibits an activity about 2-fold lower than control (cells in light medium). After switching the cells to the heavy medium, the decrease of the activity of the enzyme occurred during the first 24 h and thereafter remained at a steady state for at least 4 days. In contrast, 24 h after the switch, the sedimentation coefficient of forskolin-stimulated adenylate cyclase was progressively shifted to a higher value indicating that the heavy isotope-labeled enzyme replaced the pre-existing light form of the molecule. These observations show that the rapid decrease in adenylate cyclase activity and the synthesis of heavy adenylate cyclase molecules are two separate events. The relative amounts of heavy and light components of forskolin-stimulated adenylate cyclase obtained in sucrose gradient differential sedimentation were determined as a function of time beginning 24 h after the transfer into the heavy medium. The decrease of the pre-existing light form could be represented by simple first order kinetics with a half-time of 40 h. This result suggests that the metabolic renewal of forskolin-stimulated adenylate cyclase is comparable to that of most plasma membrane proteins.  相似文献   

16.
Human platelet membrane proteins were phosphorylated by exogenous, partially purified Ca2+-activated phospholipid-dependent protein kinase (protein kinase C). The phosphorylation of one of the major substrates for protein kinase C (Mr = 41 000) was specifically suppressed by the beta subunit of the inhibitory guanine-nucleotide-binding regulatory component (Gi, Ni) of adenylate cyclase. The free alpha subunit of Gi (Mr = 41 000) also served as an excellent substrate for the kinase (greater than 0.5 mol phosphate incorporated per mol of subunit), but the Gi oligomer (alpha X beta X gamma) did not. Treatment of cyc- S49 lymphoma cells, which are deficient in Gs/Ns (the stimulatory component) but contain functional Gi/Ni, with the phorbol ester, 12-O-tetradecanoylphorbol 13-acetate, a potent activator of protein kinase C, did not alter stimulation of adenylate cyclase catalytic activity by forskolin, whereas the Gi/Ni-mediated inhibition of the cyclase by the hormone, somatostatin, was impaired in these membranes. The results suggest that the alpha subunit of the inhibitory guanine-nucleotide-binding regulatory component of adenylate cyclase may be a physiological substrate for protein kinase C and that the function of the component in transducing inhibitory hormonal signals to adenylate cyclase is altered by its phosphorylation.  相似文献   

17.
The specific mechanism by which the inhibitory guanine nucleotide binding protein (Gi) mediates the inhibition of adenylate cyclase activity is still unclear. The subunit dissociation model, based on studies in purified or reconstituted systems, suggests that the beta gamma subunit, which is dissociated with activation of Gi, inhibits the function of the stimulatory guanine nucleotide binding protein (Gs) by reducing the concentration of the free alpha s subunit. In the present study, Gs protein function is determined by measuring cholera toxin-blockable, isoproterenol-induced increases in guanosine triphosphate (GTP) binding capacity to rat cardiac ventricle membrane preparations. Carbamylcholine totally inhibited this beta-adrenergic receptor-coupled Gs protein function. Pretreatment of the cardiac ventricle membrane with pertussis toxin prevented this muscarinic agonist effect. These results confirm the possibility of an inhibitory agonist-receptor coupled effect through Gi on Gs protein function proximal to the catalytic unit of adenylate cyclase in an intact membrane preparation.  相似文献   

18.
The regulation of GTP-binding proteins (G proteins) was examined during the course of differentiation of neuroblastoma N1E-115 cells. N1E-115 cell membranes possess three Bordetella pertussis toxin (PTX) substrates assigned to alpha-subunits (G alpha) of Go (a G protein of unknown function) and "Gi (a G protein inhibitory to adenylate cyclase)-like" proteins and one substrate of Vibrio cholerae toxin corresponding to an alpha-subunit of Gs (a G protein stimulatory to adenylate cyclase). In undifferentiated cells, only one form of Go alpha was found, having a pI of 5.8 Go alpha content increased by approximately twofold from the undifferentiated state to 96 h of cell differentiation. This is mainly due to the appearance of another Go alpha form having a pI of 5.55. Both Go alpha isoforms have similar sizes on sodium dodecyl sulfate-polyacrylamide gels, are recognized by polyclonal antibodies to bovine brain Go alpha, are ADP-ribosylated by PTX, and are covalently myristylated in whole N1E-115 cells. In addition, immunofluorescent staining of N1E-115 cells with Go alpha antibodies revealed that association of Go alpha with the plasma membrane appears to coincide with the expression of the most acidic isoform and morphological cell differentiation. In contrast, the levels of both Gi alpha and Gs alpha did not significantly change, whereas that of the common beta-subunit increased by approximately 30% over the same period. These results demonstrate specific regulation of the expression of Go alpha during neuronal differentiation.  相似文献   

19.
Incubation of 1321N1 human astrocytoma cells with 1 microM isoproterenol rapidly results in the conversion of a portion of the beta-adrenergic receptors to a membrane form that can be separated from markers for the plasma membrane by sucrose density gradient or differential centrifugation. This "light peak" form of the receptor reaches a maximal level within 10 min of incubation of cells with catecholamine. Two types of experiments suggest that the early phase of catecholamine-induced desensitization of the beta-adrenergic receptor-linked adenylate cyclase can be separated into at least two reactions. First, the agonist-induced loss of catecholamine-stimulated adenylate cyclase activity precedes the appearance of beta-adrenergic receptors in the light peak fraction by 1-2 min. Second, pretreatment of cells with concanavalin A prior to induction of desensitization blocks the formation of the light peak form of beta-adrenergic receptors without blocking the "uncoupling" reaction as measured by catecholamine-stimulated adenylate cyclase activity. Specificity for the reaction that converts beta-adrenergic receptors to the light peak form is indicated by the lack of a catecholamine-induced alteration in the sucrose density gradient distribution of muscarinic cholinergic receptors, adenylate cyclase or the guanine nucleotide-binding proteins, Ns and Ni. The light peak of beta-adrenergic receptors migrates at a density similar to that of at least a portion of the activity of galactosyltransferase, a marker for Golgi. Enzyme marker activities for lysosomes and endoplasmic reticulum are not associated with this population of beta-adrenergic receptors. Taken together, these and other data suggest that incubation of 1321N1 cells with isoproterenol results in a rapid uncoupling of beta-adrenergic receptors from adenylate cyclase which is followed by a change in the membrane form of the receptor. This latter step most likely represents internalization of receptors into a vesicular form which may then serve as the precursor state from which receptors are eventually lost from the cell.  相似文献   

20.
Prolonged treatment of human platelets with the prostacyclin analog iloprost led to desensitization of the response to various prostaglandin derivatives. However, basal adenylyl cyclase activity and stimulation by agents acting directly via Gs, the stimulatory guanine-nucleotide-binding regulatory protein of adenylyl cyclase, were likewise decreased. Reconstitution of desensitized membranes with purified Gs from turkey erythrocytes indicated no alteration in the catalyst itself. However, the function of Gs (in cholate extracts) appeared to be severely impaired when reconstituted with adenylyl cyclase catalyst. Modification of Gs was also indicated by its altered sedimentation in sucrose density gradients. From Western blots, the alpha subunit of Gs, alpha s, from control platelets sedimented as a 5.6S species, while that from desensitized cells appeared at higher S values (in a polydisperse distribution). Activation by guanosine 5'-[gamma-thio]triphosphate of Gs from control platelets shifted alpha s to 3.5-3.7S, while activation of Gs from desensitized platelets induced such shift only for a minor portion of alpha s. This small fraction alone appeared to be susceptible to ADP-ribosylation by cholera toxin/[32P]NAD. Furthermore, an antibody directed against the C-terminal hexadecapeptide of alpha s precipitated much less alpha s from cholate extracts derived from desensitized platelets. Modification of alpha s during desensitization was also suggested from cross-linking experiments using the homobifunctional agent bismaleimidohexane: alpha s from desensitized platelets formed a single product of 80 kDa, while that from untreated platelets yielded a doublet (100 kDa and 110 kDa).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号