首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oxidation of pyruvate is mediated by the pyruvate dehydrogenase complex (PDHC; EC 1.2.4.1, EC 2.3.1.12 and EC 1.6.4.3) whose catalytic activity is influenced by phosphorylation and by product inhibition. 2-Oxoglutarate and 3-hydroxybutyrate are readily utilized by brain mitochondria and inhibit pyruvate oxidation. To further elucidate the regulatory behavior of brain PDHC, the effects of 2-oxoglutarate and 3-hydroxyburyrate on the flux of PDHC (as determined by [1-14C]pyruvate decarboxylation) and the activation (phosphorylation) state of PDHC were determined in isolated, non-synaptic cerebro-cortical mitochondria in the presence or absence of added adenine nucleotides (ADP or ATP). [1-14C]Pyruvate decarboxylation by these mitochondria is consistently depressed by either 3-hydroxybutyrate or 2-oxoglutarate in the presence of ADP when mitochondrial respiration is stimulated. In the presence of exogenous ADP, 3-hydroxybutyrate inhibits pyruvate oxidation mainly through the phosphorylation of PDHC, since the reduction of the PDHC flux parallels the depression of PDHC activation state under these conditions. On the other hand, in addition to the phosphorylation of PDHC, 2-oxoglutarate may also regulate pyruvate oxidation by product inhibition of PDHC in the presence of 0.5 mM pyruvate plus ADP or 5 mM pyruvate alone. This conclusion is based upon the observation that 2-oxoglutarate inhibits [1-14C]pyruvate decarboxylation to a much greater extent than that predicted from the PDHC activation state (i.e. catalytic capacity) alone. In conjunction with the results from our previous study (Lai, J. C. K. and Sheu, K.-F. R. (1985) J. Neurochem. 45, 1861–1868), the data of the present study are consistent with the notion that the relative importance of the various mechanisms that regulate brain and peripheral tissue PDHCs shows interesting differences.  相似文献   

2.
MALDI imaging mass spectrometry (IMS) was used to characterize lipid species within sections of human eyes. Common phospholipids that are abundant in most tissues were not highly localized and observed throughout the accessory tissue, optic nerve, and retina. Triacylglycerols were highly localized in accessory tissue, whereas sulfatide and plasmalogen glycerophosphoethanolamine (PE) lipids with a monounsaturated fatty acid were found enriched in the optic nerve. Additionally, several lipids were associated solely with the inner retina, photoreceptors, or retinal pigment epithelium (RPE); a plasmalogen PE lipid containing DHA (22:6), PE(P-18:0/22:6), was present exclusively in the inner retina, and DHA-containing glycerophosphatidylcholine (PC) and PE lipids were found solely in photoreceptors. PC lipids containing very long chain (VLC)-PUFAs were detected in photoreceptors despite their low abundance in the retina. Ceramide lipids and the bis-retinoid, N-retinylidene-N-retinylethanolamine, was tentatively identified and found only in the RPE. This MALDI IMS study readily revealed the location of many lipids that have been associated with degenerative retinal diseases. Complex lipid localization within retinal tissue provides a global view of lipid organization and initial evidence for specific functions in localized regions, offering opportunities to assess their significance in retinal diseases, such as macular degeneration, where lipids have been implicated in the disease process.  相似文献   

3.
Pyruvate dehydrogenase complex (PDHC) in rat brain was studied immunochemically, using antibodies against the bovine kidney PDHC, by immunoblotting, immunoprecipitation, inhibition of enzyme activity, and enzyme-linked immunoabsorbent assay (ELISA). The immunoblots showed that the antibodies bound strongly to the alpha peptide of the pyruvate dehydrogenase (E1) component, and to the dihydrolipoyl transacetylase (E2) and the dihydrolipoyl dehydrogenase (E3) components of PDHC. A similar immunoblotting pattern was observed in all eight brain regions examined. On immunoblotting of the subcellular fractions, these PDHC peptides were observed in mitochondria and synaptosomes but not in the postmitochondrial supernatants. This agrees with other evidence that brain PDHC is localized in the mitochondria. These results, together with those from sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the immunoprecipitin, also showed that the alpha E1, beta E1, and E3 peptides of rat brain PDHC are very similar in sizes to those of the bovine kidney PDHC, being 42, 36, and 58 kD, respectively. The size of the E2 peptide, 66 kD, is different from that of bovine kidney E2, 73 kD. The relative abundance of PDHC protein in nonsynaptic mitochondria was compared by enzyme activity titration and ELISA. Both methods demonstrated that the amount of PDHC antigen in the mitochondria from cerebral cortex is greater than that in the olfactory bulb mitochondria. This is consistent with the results of the activity measurement. The ELISA also showed that the PDHCs in both mitochondrial populations are antigenically similar.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Pyruvate dehydrogenase complex (PDHC) was purified from bovine kidney with a specific activity of 12-16 mumol of NADH or acetyl-CoA formed/min/mg protein. The four peptides comprising its three catalytic components were separated by sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Rabbit antibodies against this highly purified PDHC (anti-PDHC) exhibited similar binding affinity to the phospho-PDHC as it did to the PDHC antigen. To test whether there exist brain isozymes of PDHC differing from kidney enzyme, which has been extensively characterized, the PDHCs in bovine brain and kidney were compared using this anti-PDHC. The PDHC activities in the brain and kidney mitochondrial extracts were inhibited to the same degree by varying amounts of anti-PDHC. Brain PDHC was precipitated with the anti-PDHC and resolved by SDS-PAGE. The four brain PDHC peptides isolated immunochemically with anti-PDHC had the same sizes as the kidney PDHC peptides. These PDHC peptides from kidney and brain were further compared by their peptide fragment patterns, which were generated by partial proteolysis with Staphylococcus aureus V8 protease or by CNBr and resolved by SDS-PAGE. The peptide patterns generated with the former method indicated that the alpha and beta peptides of the pyruvate dehydrogenase (E1) component and the peptide of dihydrolipoyl transacetylase (E2) component of kidney PDHC were very similar to the corresponding peptides immunologically isolated from brain. The peptide patterns generated with CNBr further confirmed that the beta E1 and E2 peptides of kidney PDHC were similar to the corresponding peptides from brain.  相似文献   

5.
Periodontitis is a chronic inflammatory disease caused by gram-negative anaerobic bacteria. Monocytes and macrophages stimulated by periodontopathic bacteria induce inflammatory mediators that cause tooth-supporting structure destruction and alveolar bone resorption. In this study, using a DNA microarray, we identified the enhanced gene expression of thrombospondin-1 (TSP-1) in human monocytic cells stimulated by Porphyromonas gingivalis lipopolysaccharide (LPS). TSP-1 is a multifunctional extracellular matrix protein that is upregulated during the inflammatory process. Recent studies have suggested that TSP-1 is associated with rheumatoid arthritis, diabetes mellitus, and osteoclastogenesis. TSP-1 is secreted from neutrophils, monocytes, and macrophages, which mediate immune responses at inflammatory regions. However, TSP-1 expression in periodontitis and the mechanisms underlying TSP-1 expression in human monocytic cells remain unknown. Here using real-time RT-PCR, we demonstrated that TSP-1 mRNA expression level was significantly upregulated in inflamed periodontitis gingival tissues and in P. gingivalis LPS-stimulated human monocytic cell line THP-1 cells. TSP-1 was expressed via Toll-like receptor (TLR) 2 and TLR4 pathways. In P. gingivalis LPS stimulation, TSP-1 expression was dependent upon TLR2 through the activation of NF-κB signaling. Furthermore, IL-17F synergistically enhanced P. gingivalis LPS-induced TSP-1 production. These results suggest that modulation of TSP-1 expression by P. gingivalis plays an important role in the progression and chronicity of periodontitis. It may also contribute a new target molecule for periodontal therapy.  相似文献   

6.
In the inflammatory gingival tissues of patients with periodontitis, cytokines such as interleukin (IL)-1 alpha, IL-1 beta, IL-6, IL-8, and tumor necrosis factor (TNF)-alpha have been detected. Gingival fibroblasts are the major constituents of gingival tissue. We recently demonstrated that lipopolysaccharide (LPS) from periodontopathic bacteria induces inflammatory reactions in various tissues via CD14 and/or Toll-like receptors (TLRs) in gingival tissues [Biochem. Biophys. Res. Commun. 273 (2000) 1161]. To confirm this, we examined the expression of IL-1 alpha, IL-1 beta, IL-6, IL-8, TNF-alpha, CD14, TLR2, and TLR4 in human gingival fibroblasts (HGFs) obtained from patients with healthy or inflammatory gingiva using DNA microarray analysis. We also studied the expression levels of these proteins by flow cytometric analysis (FACS). The expression levels of all eight genes in the HGFs of the Inflammatory group were significantly higher than those in the Healthy group on DNA microarray analysis. FACS revealed that the expression levels of all eight proteins on the HGFs of the Inflammatory group were higher than those on the Healthy group. Our data indicated that these eight proteins in HGFs are involved in inflammatory conditions in the gingiva, including periodontal disease. Our results suggested that these eight proteins, in turn, act directly or indirectly on the immune response by activating host cells involved in inflammatory processes.  相似文献   

7.
Gram-positive bacteria entering the dentinal tissue during the carious process are suspected to influence the immune response in human dental pulp. Odontoblasts situated at the pulp/dentin interface are the first cells encountered by these bacteria and therefore could play a crucial role in this response. In the present study, we found that in vitro-differentiated odontoblasts constitutively expressed the pattern recognition receptor TLR1-6 and 9 genes but not TLR7, 8, and 10. Furthermore, lipoteichoic acid (LTA), a wall component of Gram-positive bacteria, triggered the activation of the odontoblasts. LTA up-regulated the expression of its own receptor TLR2, as well as the production of several chemokines. In particular, an increased amount of CCL2 and CXCL10 was detected in supernatants from LTA-stimulated odontoblasts, and those supernatants augmented the migration of immature dendritic cells in vitro compared with controls. Clinical relevance of these observations came from immunohistochemical analysis showing that CCL2 was expressed in vivo by odontoblasts and blood vessels present under active carious lesions but not in healthy dental pulps. In contrast with this inflammatory response, gene expression of major dentin matrix components (type I collagen, dentin sialophosphoprotein) and TGF-beta1 was sharply down-regulated in odontoblasts by LTA. Taken together, these data suggest that odontoblasts activated through TLR2 by Gram-positive bacteria LTA are able to initiate an innate immune response by secreting chemokines that recruit immature dendritic cells while down-regulating their specialized functions of dentin matrix synthesis and mineralization.  相似文献   

8.
Effects of Dichloroacetate on Brain Tissue Pyruvate Dehydrogenase   总被引:3,自引:1,他引:2  
The activation of the pyruvate dehydrogenase complex (PDHC) by dichloroacetate (DCA) was studied in brain tissue. Chronic administration of DCA to rats caused no significant change of PDHC activation in brain. DCA brain concentrations were comparable to those of other tissues in which activation is known to occur. No effect of DCA on PDHC could be demonstrated from isolated brain mitochondria, whereas DCA reversed the deactivation of PDHC by ATP, alpha-ketoglutarate plus malate, and succinate in liver mitochondria. This study suggests that the regulation of PDHC activation in neural tissue differs from that in other tissues.  相似文献   

9.
Infection with bacteria such as Chlamydia pneumonia, Helicobacter pylori or Porphyromonas gingivalis may be triggering the secretion of inflammatory cytokines that leads to atherogenesis. The mechanisms by which the innate immune recognition of these pathogens could lead to atherosclerosis remain unclear. In this study, using human vascular endothelial cells or HEK-293 cells engineered to express pattern-recognition receptors (PRRs), we set out to determine Toll-like receptors (TLRs) and functionally associated PRRs involved in the innate recognition of and response to lipopolysaccharide (LPS) from H. pylori or P. gingivalis. Using siRNA interference or recombinant expression of cooperating PRRs, we show that H. pylori and P. gingivalis LPS-induced cell activation is mediated through TLR2. Human vascular endothelial cell activation was found to be lipid raft-dependent and to require the formation of heterotypic receptor complexes comprising of TLR2, TLR1, CD36 and CD11b/CD18. In addition, we report that LPS from these bacterial strains are able to antagonize TLR4. This antagonistic activity of H. pylori or P. gingivalis LPS, as well as their TLR2 activation capability may be associated with their ability to contribute to atherosclerosis.  相似文献   

10.
Intestinal inflammatory diseases are the result of multiple processes, including mucosal oxidative stress and perturbed homeostasis between commensal bacteria and mucosal immunity. Toll-like receptors (TLRs) recognize molecular-associated microorganisms' patterns and trigger innate immunity responses contributing to intestinal homeostasis and inflammatory responses. However, TLRs effects on redox balance in intestinal mucosa remain unknown. Therefore, the present study analyzes the effect of TLR2, TLR3, and TLR4 on both oxidative damage of lipids and proteins, and the activity of antioxidant enzymes in enterocyte-like Caco-2 cells. The results show that the activation of these TLRs increased lipid and protein oxidation levels; however, the effect on the antioxidant enzymes activity is different depending on the TLR activated. These results suggest that the activation of TLR2, TLR3, and TLR4 might affect intestinal inflammation by not only their inherent innate immunity responses, but also their pro-oxidative effects on intestinal epithelial cells.  相似文献   

11.
Pulmonary surfactant is a mixture of lipids and proteins, consisting of 90% phospholipid, and 10% protein by weight, found predominantly in pulmonary alveoli of vertebrate lungs. Two minor components of pulmonary surfactant phospholipids, phosphatidylglycerol (PG) and phosphatidylinositol (PI), are present within the alveoli at very high concentrations, and exert anti-inflammatory effects by regulating multiple Toll like receptors (TLR2/1, TLR4, and TLR2/6) by antagonizing cognate ligand-dependent activation. POPG also attenuates LPS-induced lung injury in vivo. In addition, these lipids bind directly to RSV and influenza A viruses (IAVs) and block interaction between host cells and virions, and thereby prevent viral replication in vitro. POPG and PI also inhibit RSV and IAV infection in vivo, in mice and ferrets. The lipids markedly inhibit SARS-CoV-2 infection in vitro. These findings suggest that both POPG and PI have strong potential to be applied as both prophylaxis and post-infection treatments for problematic respiratory viral infections.  相似文献   

12.
Members of the Toll-like receptor (TLR) family mediate dorsoventral patterning and cellular adhesion in insects as well as immune responses to microbial products in both insects and mammals. TLRs are characterized by extracellular leucine-rich repeat domains and an intracellular signaling domain that shares homology with cytoplasmic sequences of the mammalian IL-1 receptor and plant disease resistance genes. Ten human TLRs have been cloned as well as RP105, a protein similar to TLR4 but lacking the intracellular signaling domain. However, only five TLRs have described functions as receptors for bacterial products (e.g., LPS, lipoproteins). To identify potential sites of action, we used quantitative real-time RT-PCR to examine systematically the expression of mRNAs encoding all known human TLRs, RP105, and several other proteins important in TLR functions (e.g., MD-1, MD-2, CD14, MyD88). Most tissues tested expressed at least one TLR, and several expressed all (spleen, peripheral blood leukocytes). Analysis of TLR expression in fractionated primary human leukocytes (CD4(+), CD8(+), CD19(+), monocytes, and granulocytes) indicates that professional phagocytes express the greatest variety of TLR mRNAs although several TLRs appear more restricted to B cells, suggesting additional roles for TLRs in adaptive immunity. Monocyte-like THP-1 cells regulate TLR mRNA levels in response to a variety of stimuli including phorbol esters, LPS, bacterial lipoproteins, live bacteria, and cytokines. Furthermore, addition of Escherichia coli to human blood ex vivo caused distinct changes in TLR expression, suggesting that important roles exist for these receptors in the establishment and resolution of infections and inflammation.  相似文献   

13.
Porphyromonas gingivalis (P. gingivalis) is implicated in the initiation and progression of periodontitis. Human gingival fibroblasts (HGFs) are the major constituent of gingival connective tissue. P. gingivalis or its components such as lipopolysaccharide (LPS) upregulate the production of various inflammatory cytokines including interleukin (IL)-1 and IL-6 in HGFs. Recently, we demonstrated that the binding of P. gingivalis LPS to Toll-like receptor 4 (TLR4) on HGFs activates various second messenger systems (Biochem. Biophys. Res. Commun. 273, 1161-1167, 2000). In the present study, we examined the level of TLR4 expression on HGFs by flow cytometric analysis (FACS), and studied the levels of IL-1 and IL-6 in the culture medium upon LPS stimulation of HGFs by enzyme-linked immunosorbent assay (ELISA). Upon stimulation by P. gingivalis LPS for 24 h, HGFs that expressed a high level of TLR4 secreted significantly higher levels of IL-1 and IL-6 than HGFs that expressed a low level of TLR4. On the other hand, after stimulation with P. gingivalis LPS for 24 h, the level of TLR4 on the surface of HGFs decreased. These results suggest that the level of TLR4 expression on HGFs reflects the extent of inflammation in the gingival tissue, and that P. gingivalis LPS downregulates TLR4 expression on HGFs. These findings may be used to control inflammatory and immune responses in periodontal disease.  相似文献   

14.
Xu H  Wu Q  Dang S  Jin M  Xu J  Cheng Y  Pan M  Wu Y  Zhang C  Zhang Y 《PloS one》2011,6(12):e27399
The link between inflammation and colorectal carcinoma has been acknowledged. However, the impact of bacterial lipopolysaccharide (LPS) binding to Toll-like receptor 4 (TLR4) on chemokine receptors in human colorectal carcinoma cells still remains to be elucidated. The present study shows that exposure to LPS elevated CXC chemokine receptor 7 (CXCR7) expression in colorectal carcinoma SW480 and Colo 205 cell lines expressing TLR4/myeloid differential protein (MD-2). CXCR7 is associated with SW480 cell proliferation and migration. However, exposure of SW480 and Colo 205 cells to LPS had no effect on CXCR4 expression. To further support the above results, the expression of TLR4, MD-2, and CXCR7 was analyzed in human colorectal carcinoma tissues. Higher rates of TLR4 (53%), MD-2 (70%), and CXCR7 (29%) expression were found in colorectal carcinoma tissues than in normal tissues. We demonstrated that the recombination of TLR4, MD-2 and CXCR7 strongly correlated with tumor size, lymph node metastasis and distant metastasis in colorectal carcinoma tissue samples (p = 0.037, p = 0.002, p = 0.042, resp.). Accordingly, simultaneous examination of the expression of TLR4, MD-2 and CXCR7 in cancer tissues of colorectal carcinoma may provide valuable prognostic diagnosis of carcinoma growth and metastasis. Interplay of TLR4, MD-2 and CXCR7 may be of interest in the context of novel immunomodulatory therapies for colorectal carcinoma.  相似文献   

15.
Porphyromonas gingivalis is a gram-negative bacterium strongly associated with periodontitis, a chronic inflammatory disease of the tissue surrounding the tooth root surface. Lipopolysaccharide (LPS) obtained from P. gingivalis is unusual in that it has been shown to display an unusual amount of lipid A heterogeneity containing both tetra- and penta-acylated lipid A structures. In this report, it is shown that penta-acylated lipid A structures facilitate E-selectin expression whereas tetra-acylated lipid A structures do not. Furthermore, it is shown that tetra-acylated lipid A structures are potent antagonists for E-selectin expression. Both tetra- and penta-acylated lipid A structures interact with TLR4 although experiments utilizing human, mouse and human/mouse chimeric TLR4 proteins demonstrated that they interact differentially with the TLR4 signalling complexes. The presence of two different structural types of lipid A in P. gingivalis LPS, with opposing effects on the E-selectin response suggests that this organism is able to modulate innate host responses by alterations in the relative amount of these lipid A structures.  相似文献   

16.
In the present investigation, we compared the metabolism of arachidonic acid in human endometrial stromal cells maintained in monolayer culture with that in human decidual tissues. By gas-chromatographic analysis, the distribution of arachidonic acid in glycerophospholipids and in the neutral lipids of decidual tissues and stromal cells in culture was similar. After the addition of [14C]arachidonic acid to the culture medium, steady-state conditions with respect to radioactive labeling of the lipids of the cells were attained after 24 h, except for phosphatidylethanolamine and neutral lipids. The percentage distribution of [14C]arachidonic acid in the lipids of the cells in culture was as follows: phosphatidylcholine, 41%; phosphatidylserine, 5%; phosphatidylinositol, 19%; phosphatidylethanolamine, 22%; neutral lipids, 11%. This distribution of arachidonic acid among the lipids is similar to that in decidual tissue, except for that in phosphatidylethanolamine. The amount of radioactivity in phosphatidylethanolamine continued to increase up to 72 h whereas that in neutral lipids declined after a maximum amount was present at 4 h. In the cells in monolayer culture, [14C]prostaglandin E2 and [14C]prostaglandin F2 alpha were produced from [14C]arachidonic acid, as is true in superfused decidual tissue. The similarities in arachidonic acid metabolism in these cells to that in decidual tissue are supportive of the proposition that endometrial stromal cells in monolayer culture are an appropriate model for the study of the regulation of arachidonic acid release and prostaglandin formation by endometrium and decidua vera.  相似文献   

17.
Periodontitis is a chronic inflammatory disease that leads to destruction of the attachment apparatus of the teeth. The presence of particular oral bacteria and the host inflammatory response contribute to disease progression. Porphyromonas gingivalis is a Gram-negative anaerobe considered to be a major periodontal pathogen. Isolated Ags from P. gingivalis activate innate immune cells through TLR2 or TLR4. We challenged TLR2- and TLR4-deficient mice with live P. gingivalis and studied the inflammatory response and bacterial survival. Wild-type and TLR4-deficient mice produced high levels of cytokines in response to P. gingivalis challenge, whereas cytokine levels were nearly absent or delayed in TLR2-deficient mice. Surprisingly, P. gingivalis was cleared far more rapidly in TLR2-deficient mice. In addition, TLR2-deficient mice resisted bone loss following oral infection with P. gingivalis.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号