首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A progressive waning in Foxp3(+) regulatory T cell (Treg) functions is thought to provoke autoimmunity in the NOD model of type 1 diabetes (T1D). A deficiency in IL-2 is one of the main triggers for the defective function of Tregs in islets. Notably, abrogation of the ICOS pathway in NOD neonates or BDC2.5-NOD (BDC2.5) mice exacerbates T1D, suggesting an important role for this costimulatory pathway in tolerance to islet Ags. Thus, we hypothesize that ICOS selectively promotes Foxp3(+) Treg functions in BDC2.5 mice. We show that ICOS expression discriminates effector Foxp3(-) T cells from Foxp3(+) Tregs and specifically designates a dominant subset of intra-islet Tregs, endowed with an increased potential to expand, secrete IL-10, and mediate suppressive activity in vitro and in vivo. Consistently, Ab-mediated blockade or genetic deficiency of ICOS selectively abrogates Treg-mediated functions and T1D protection and exacerbates disease in BDC2.5 mice. Moreover, T1D progression in BDC2.5 mice is associated with a decline in ICOS expression in and expansion and suppression by intra-islet Foxp3(+) Tregs. We further show that the ICOS(+) Tregs, in contrast to their ICOS(-) counterparts, are more sensitive to IL-2, a critical signal for their survival and functional stability. Lastly, the temporal loss in ICOS(+) Tregs is readily corrected by IL-2 therapy or protective Il2 gene variation. Overall, ICOS is critical for the homeostasis and functional stability of Foxp3(+) Tregs in prediabetic islets and maintenance of T1D protection.  相似文献   

2.
Immunization of NOD mice with autoantigens such as glutamic acid decarboxylase (GAD) 221-235 peptide (p221) can induce Ag-specific CD4(+) T regulatory (Tr) cells. However, it is unclear whether these Tr cells acquire their regulatory capacity due to immunization or whether they are constitutively harbored in unimmunized naive mice. To address this question, we used an I-Ag7 tetramer to isolate p221-specific T cells from naive NOD mice (N221(+) cells) after peptide-specific in vitro expansion. The N221(+) T cells produced IFN-gamma and IL-10, but very little IL-4, in response to p221 stimulation. These T cells could function as regulatory cells and inhibit in vitro proliferation of diabetogenic BDC2.5 cells. This suppressive activity was cell contact-independent and was abrogated by Abs to IL-10 or IL-10R. Interestingly, IL-2 produced by other T cells present in the cell culture induced unactivated N221(+) T cells to exhibit regulatory activities involving production of IL-10. In vivo, N221(+) cells inhibited diabetes development when cotransferred with NOD splenocytes into NOD/scid recipients. Together, these results demonstrate that p221-specific IL-10-dependent Tr cells, including Tr type 1 cells, are present in naive NOD mice. The use of spontaneously arising populations of GAD peptide-specific Tr cells may represent a promising immunotherapeutic approach for preventing type 1 diabetes.  相似文献   

3.
Effective immunotherapy for type 1 diabetes (T1D) relies on active induction of peripheral tolerance. Myeloid-derived suppressor cells (MDSCs) play a critical role in suppressing immune responses in various pathologic settings via multiple mechanisms, including expansion of regulatory T cells (Tregs). In this study, we investigated whether MDSCs could act as APCs to induce expansion of Ag-specific Tregs, suppress T cell proliferation, and prevent autoimmune T1D development. We found that MDSC-mediated expansion of Tregs and T cell suppression required MHC-dependent Ag presentation. A murine T1D model was established in INS-HA/RAG(-/-) mice in which animals received CD4-HA-TCR transgenic T cells via adoptive transfer. We found a significant reduction in the incidence of diabetes in recipients receiving MDSC plus HA, but not OVA peptide, leading to 75% diabetes-free mice among the treated animals. To test further whether MDSCs could prevent diabetes onset in NOD mice, nondiabetic NOD/SCID mice were injected with inflammatory T cells from diabetic NOD mice. MDSCs significantly prevented diabetes onset, and 60% of MDSC-treated mice remained diabetes free. The pancreata of treated mice showed significantly lower levels of lymphocyte infiltration in islet and less insulitis compared with that of the control groups. The protective effects of MDSCs might be mediated by inducing anergy in autoreactive T cells and the development of CD4(+)CD25(+)Foxp3(+) Tregs. Thist study demonstrates a remarkable capacity of transferred MDSCs to downregulate Ag-specific autoimmune responses and prevent diabetes onset, suggesting that MDSCs possess great potential as a novel cell-based tolerogenic therapy in the control of T1D and other autoimmune diseases.  相似文献   

4.
Autoantigen-based immunotherapy can modulate autoimmune diabetes, perhaps due to the activation of Ag-specific regulatory T cells. Studies of these regulatory T cells should help us understand their roles in diabetes and aid in designing a more effective immunotherapy. We have used class II MHC tetramers to isolate Ag-specific T cells from nonobese diabetic (NOD) mice and BALB/c mice treated with glutamic acid decarboxylase 65 peptides (p206 and p221). Based on their cytokine secretion profiles, immunization of NOD mice with the same peptide induced different T cell subsets than in BALB/c mice. Treatment of NOD mice induced not only Th2 cells but also IFN-gamma/IL-10-secreting T regulatory type 1 (Tr1) cells. Adoptive transfer experiments showed that isolated tetramer(+) T cells specific for p206 or p221 could inhibit diabetes development. These cells were able to suppress the in vitro proliferation of other NOD mouse T cells without cell-cell contact. They performed their regulatory functions probably by secreting cytokines, and Abs against these cytokines could block their suppressive effect. Interestingly, the presence of both anti-IL-10 and anti-IFN-gamma could enhance the target cell proliferation, suggesting that Tr1 cells play an important role. Further in vivo experiments showed that the tetramer(+) T cells could block diabetogenic T cell migration into lymph nodes. Therefore, treatment of NOD mice with autoantigen could induce Th2 and Tr1 regulatory cells that can suppress the function and/or block the migration of other T cells, including diabetogenic T cells, and inhibit diabetes development.  相似文献   

5.
Type-1 diabetes (T1D) is an autoimmune disease targeting insulin-producing beta cells, resulting in dependence on exogenous insulin. To date, significant efforts have been invested to develop immune-modulatory therapies for T1D treatment. Previously, IL-2 immunotherapy was demonstrated to prevent and reverse T1D at onset in the non-obese diabetic (NOD) mouse model, revealing potential as a therapy in early disease stage in humans. In the NOD model, IL-2 deficiency contributes to a loss of regulatory T cell function. This deficiency can be augmented with IL-2 or antibody bound to IL-2 (Ab/IL-2) therapy, resulting in regulatory T cell expansion and potentiation. However, an understanding of the mechanism by which reconstituted regulatory T cell function allows for reversal of diabetes after onset is not clearly understood. Here, we describe that Ab/IL-2 immunotherapy treatment, given at the time of diabetes onset in NOD mice, not only correlated with reversal of diabetes and expansion of Treg cells, but also demonstrated the ability to significantly increase beta cell proliferation. Proliferation appeared specific to Ab/IL-2 immunotherapy, as anti-CD3 therapy did not have a similar effect. Furthermore, to assess the effect of Ab/IL-2 immunotherapy well after the development of diabetes, we tested the effect of delaying treatment for 4 weeks after diabetes onset, when beta cells were virtually absent. At this late stage after diabetes onset, Ab/IL-2 treatment was not sufficient to reverse hyperglycemia. However, it did promote survival in the absence of exogenous insulin. Proliferation of beta cells could not account for this improvement as few beta cells remained. Rather, abnormal insulin and glucagon dual-expressing cells were the only insulin-expressing cells observed in islets from mice with established disease. Thus, these data suggest that in diabetic NOD mice, beta cells have an innate capacity for regeneration both early and late in disease, which is revealed through IL-2 immunotherapy.  相似文献   

6.
Nonobese diabetic (NOD) mice expressing the BDC2.5 TCR transgene are useful for studying type 1 diabetes. Several peptides have been identified that are highly active in stimulating BDC2.5 T cells. Herein, we describe the use of I-Ag7 tetramers containing two such peptides, p79 and p17, to detect and characterize peptide-specific T cells. The tetramers could stain CD4(+) T cells in the islets and spleens of BDC2.5 transgenic mice. The percentage of CD4(+), tetramer(+) T cells increased in older mice, and it was generally higher in the islets than in the spleens. Our results also showed that tetAg7/p79 could stain a small population of CD4(+) T cells in both islets and spleens of NOD mice. The percentage of CD4(+), tetramer(+) T cells increased in cells that underwent further cell division after being activated by peptides. The avidity of TCRs on purified tetAg7/p79(+) T cells for tetAg7/p79 was slightly lower than that of BDC2.5 T cells. Although tetAg7/p79(+) T cells, like BDC2.5 T cells, secreted a large quantity of IFN-gamma, they were biased toward being IL-10-producing cells. Additionally, <3% of these cells expressed TCR Vbeta4. In vivo adoptive transfer experiments showed that NOD/scid recipient mice cotransferred with tetAg7/p79(+) T cells and NOD spleen cells, like mice transferred with NOD spleen cells only, developed diabetes. Therefore, we have generated Ag-specific tetramers that could detect a heterogeneous population of T cells, and a very small number of NOD mouse T cells may represent BDC2.5-like cells.  相似文献   

7.
IL-2 and TGF-β1 play key roles in the immunobiology of Foxp3-expressing CD25(+)CD4(+) T cells (Foxp3(+)Treg). Administration of these cytokines offers an appealing approach to manipulate the Foxp3(+)Treg pool and treat T cell-mediated autoimmunity such as type 1 diabetes. However, efficacy of cytokine treatment is dependent on the mode of application, and the potent pleiotropic effects of cytokines like IL-2 may lead to severe side effects. In the current study, we used a gene therapy-based approach to assess the efficacy of recombinant adeno-associated virus vectors expressing inducible IL-2 or TGF-β1 transgenes to suppress ongoing β cell autoimmunity in NOD mice. Intramuscular vaccination of recombinant adeno-associated virus to 10-wk-old NOD female mice and a subsequent 3 wk induction of IL-2 was sufficient to prevent diabetes and block the progression of insulitis. Protection correlated with an increased frequency of Foxp3(+)Treg in the periphery as well as in the draining pancreatic lymph nodes and islets. IL-2 induced a shift in the ratio favoring Foxp3(+)Treg versus IFN-γ-expressing T cells infiltrating the islets. Induction of IL-2 had no systemic effect on the frequency or activational status of T cells and NK cells. Induction of TGF-β1 had no effect on the Foxp3(+)Treg pool or the progression of β cell autoimmunity despite induced systemic levels of activated TGF-β1 that were comparable to IL-2. These results demonstrate that inducible IL-2 gene therapy is an effective and safe approach to manipulate Foxp3(+)Treg and suppress T cell-mediated autoimmunity and that under the conditions employed, IL-2 is more potent than TGF-β1.  相似文献   

8.
The interplay of CD4(+) and CD8(+) T cells targeting autoantigens is responsible for the progression of a number of autoimmune diseases, including type 1 diabetes mellitus (T1D). Understanding the molecular mechanisms that regulate T cell activation is crucial for designing effective therapies for autoimmune diseases. We probed a panel of Abs with T cell-modulating activity and identified a mAb specific for the H chain of CD98 (CD98hc) that was able to suppress T cell proliferation. The anti-CD98hc mAb also inhibited Ag-specific proliferation and the acquisition of effector function by CD4(+) and CD8(+) T cells in vitro and in vivo. Injection of the anti-CD98hc mAb completely prevented the onset of cyclophosphamide-induced diabetes in NOD mice. Treatment of diabetic NOD mice with anti-CD98hc reversed the diabetic state to normal levels, coincident with decreased proliferation of CD4(+) T cells. Furthermore, treatment of diabetic NOD mice with CD98hc small interfering RNA resolved T1D. These data indicate that strategies targeting CD98hc might have clinical application for treating T1D and other T cell-mediated autoimmune diseases.  相似文献   

9.
T cell activation is controlled by incompletely defined opposing stimulation and suppression signals that together sustain the balance between optimal host defense against infection and peripheral tolerance. In this article, we explore the impacts of Foxp3(+) regulatory T cell (Treg) suppression in priming Ag-specific T cell activation under conditions of noninfection and infection. We find the transient ablation of Foxp3(+) Tregs unleashes the robust expansion and activation of peptide-stimulated CD8(+) T cells that provide protection against Listeria monocytogenes infection in an Ag-specific fashion. By contrast, Treg ablation had nonsignificant impacts on the CD8(+) T cell response primed by infection with recombinant L. monocytogenes. Similarly, nonrecombinant L. monocytogenes administered with peptide stimulated the expansion and activation of CD8(+) T cells that paralleled the response primed by Treg ablation. Interestingly, these adjuvant properties of L. monocytogenes did not require CD8(+) T cell stimulation by IL-12 produced in response to infection, but instead were associated with sharp reductions in Foxp3(+) Treg suppressive potency. Therefore, Foxp3(+) Tregs impose critical barriers that, when overcome naturally during infection or artificially with ablation, allow the priming of protective Ag-specific CD8(+) T cells.  相似文献   

10.
Studies suggest that Gr1(+)CD11b(+) cells have immunoregulatory function, and these cells may play an important role in autoimmune diseases. In this study, we investigated the regulatory role of Gr1(+)CD11b(+) cells in protecting against type 1 diabetes in NOD mice. In this study, we showed that temporary B cell depletion induced the expansion of Gr1(+)CD11b(+) cells. Gr1(+)CD11b(+) cells not only directly suppress diabetogenic T cell function but also can induce regulatory T cell differentiation in a TGF-β-dependent manner. Furthermore, we found that Gr1(+)CD11b(+) cells could suppress diabetogenic CD4 and CD8 T cell function in an IL-10-, NO-, and cell contact-dependent manner. Interestingly, single anti-Gr1 mAb treatment can also induce a transient expansion of Gr1(+)CD11b(+) cells that delayed diabetes development in NOD mice. Our data suggest that Gr1(+)CD11b(+) cells contribute to the establishment of immune tolerance to pancreatic islet autoimmunity. Manipulation of Gr1(+)CD11b(+) cells could be considered as a novel immunotherapy for the prevention of type 1 diabetes.  相似文献   

11.
Successful Ag activation of naive T helper cells requires at least two signals consisting of TCR and CD28 on the T cell interacting with MHC II and CD80/CD86, respectively, on APCs. Recent evidence demonstrates that a third signal consisting of proinflammatory cytokines and reactive oxygen species (ROS) produced by the innate immune response is important in arming the adaptive immune response. In an effort to curtail the generation of an Ag-specific T cell response, we targeted the synthesis of innate immune response signals to generate Ag-specific hyporesponsiveness. We have reported that modulation of redox balance with a catalytic antioxidant effectively inhibited the generation of third signal components from the innate immune response (TNF-alpha, IL-1beta, ROS). In this study, we demonstrate that innate immune-derived signals are necessary for adaptive immune effector function and disruption of these signals with in vivo CA treatment conferred Ag-specific hyporesponsiveness in BALB/c, NOD, DO11.10, and BDC-2.5 mice after immunization. Modulating redox balance led to decreased Ag-specific T cell proliferation and IFN-gamma synthesis by diminishing ROS production in the APC, which affected TNF-alpha levels produced by CD4(+) T cells and impairing effector function. These results demonstrate that altering redox status can be effective in T cell-mediated diseases such as autoimmune diabetes to generate Ag-specific immunosuppression because it inhibits the third signal necessary for CD4(+) T cells to transition from expansion to effector function.  相似文献   

12.
Sulfatide-reactive type II NKT cells have been shown to regulate autoimmunity and anti-tumor immunity. Although, two major isoforms of sulfatide, C16:0 and C24:0, are enriched in the pancreas, their relative role in autoimmune diabetes is not known. Here, we report that sulfatide/CD1d-tetramer(+) cells accumulate in the draining pancreatic lymph nodes, and that treatment of NOD mice with sulfatide or C24:0 was more efficient than C16:0 in stimulating the NKT cell-mediated transfer of a delay in onset from T1D into NOD.Scid recipients. Using NOD.CD1d(-/-) mice, we show that this delay of T1D is CD1d-dependent. Interestingly, the latter delay or protection from T1D is associated with the enhanced secretion of IL-10 rather than IFN-g by C24:0-treated CD4(+) T cells and the deviation of the islet-reactive diabetogenic T cell response. Both C16:0 and C24:0 sulfatide isoforms are unable to activate and expand type I iNKT cells. Collectively, these data suggest that C24:0 stimulated type II NKT cells may regulate protection from T1D by activating DCs to secrete IL-10 and suppress the activation and expansion of type I iNKT cells and diabetogenic T cells. Our results raise the possibility that C24:0 may be used therapeutically to delay the onset and protect from T1D in humans.  相似文献   

13.
Leading hypotheses to explain helminth-mediated protection against autoimmunity postulate that type 2 or regulatory immune responses induced by helminth infections in the host limit pathogenic Th1-driven autoimmune responses. We tested these hypotheses by investigating whether infection with the filarial nematode Litomosoides sigmodontis prevents diabetes onset in IL-4-deficient NOD mice and whether depletion or absence of regulatory T cells, IL-10, or TGF-β alters helminth-mediated protection. In contrast to IL-4-competent NOD mice, IL-4-deficient NOD mice failed to develop a type 2 shift in either cytokine or Ab production during L. sigmodontis infection. Despite the absence of a type 2 immune shift, infection of IL-4-deficient NOD mice with L. sigmodontis prevented diabetes onset in all mice studied. Infections in immunocompetent and IL-4-deficient NOD mice were accompanied by increases in CD4(+)CD25(+)Foxp3(+) regulatory T cell frequencies and numbers, respectively, and helminth infection increased the proliferation of CD4(+)Foxp3(+) cells. However, depletion of CD25(+) cells in NOD mice or Foxp3(+) T cells from splenocytes transferred into NOD.scid mice did not decrease helminth-mediated protection against diabetes onset. Continuous depletion of the anti-inflammatory cytokine TGF-β, but not blockade of IL-10 signaling, prevented the beneficial effect of helminth infection on diabetes. Changes in Th17 responses did not seem to play an important role in helminth-mediated protection against autoimmunity, because helminth infection was not associated with a decreased Th17 immune response. This study demonstrates that L. sigmodontis-mediated protection against diabetes in NOD mice is not dependent on the induction of a type 2 immune shift but does require TGF-β.  相似文献   

14.
Naturally occurring CD4(+)CD25(+) regulatory T cells (Treg) are crucial in immunoregulation and have great therapeutic potential for immunotherapy in the prevention of transplant rejection, allergy, and autoimmune diseases. The efficacy of Treg-based immunotherapy critically depends on the Ag specificity of the regulatory T cells. Moreover, the use of Ag-specific Treg as opposed to polyclonal expanded Treg will reduce the total number of Treg necessary for therapy. Hence, it is crucial to develop ex vivo selection procedures that allow selection and expansion of highly potent, Ag-specific Treg. In this study we describe an ex vivo CFSE cell sorter-based isolation method for human alloantigen-specific Treg. To this end, freshly isolated CD4(+)CD25(+) Treg were labeled with CFSE and stimulated with (target) alloantigen and IL-2 plus IL-15 in short-term cultures. The alloantigen-reactive dividing Treg were characterized by low CFSE content and could be subdivided by virtue of CD27 expression. CD27/CFSE cell sorter-based selection of CD27(+) and CD27(-) cells resulted in two highly suppressive Ag-specific Treg subsets. Each subset suppressed naive and Ag-experienced memory T cells, and importantly, CD27(+) Treg also suppressed ongoing T cell responses. Summarizing, the described procedure enables induction, expansion, and especially selection of highly suppressive, Ag-specific Treg subsets, which are crucial in Ag-specific, Treg-based immunotherapy.  相似文献   

15.
Expression of IL-10 transgene (tg) in pancreatic beta cells failed to induce autoimmune insulitis and diabetes in (BALB/c x NOD)F1 mice. However, IL-10-expressing tg littermates from backcrosses (N2 and N3) with NOD mice became diabetic at 5 to 10 weeks of age in an MHC-dependent manner. In this study, we tested the possibility that enhancement in frequency of islet antigen (Ag)-specific T cells overrides the protective effects of a diabetes-resistant genetic background and promotes diabetes in IL-10 tg (BALB/c x NOD)F1 mice. For this test, we introduced the IL-10 transgene into tg BDC2.5 mice expressing the islet Ag-specific Vbeta4 T cell repertoire by breeding Ins-IL-10+/BALB/c mice with BDC2.5 mice. The progeny (Ins-IL-10+/BALB/c x BDC2.5+)F1 mice doubly tg for IL-10 and Vbeta4 (BDC2.5) T cell repertoire, developed diabetes at 10 to 18 weeks of age with a much more aggressive T cell infiltrate in the pancreatic islets than in single tg mice. Surprisingly, these diabetic mice were free from acute pancreatitis but had apoptotic beta cells in the islet infiltrate. Conversely, mice tg for Vbeta4 (BDC2.5) T cell repertoire but not IL-10 had no diabetes and no apoptotic beta cells in the islet infiltrate. Therefore, an increase in the frequency of islet-specific T cells apparently overcomes the protection from diabetes by a resistant genetic background. Interestingly, N2 backcross mice doubly tg for Vbeta4 (BDC2.5) T cell repertoire and IL-10, compared to N2 backcross mice tg for IL-10 only, eventually became diabetic but with a delayed onset and reduced incidence of disease. These findings demonstrate that, along with IL-10, an increase in frequency of islet antigen-specific T cells (a) overrides the protective effect of genetic resistance to autoimmune diabetes in F1 mice and (b) delays the onset of an otherwise accelerated diabetes in (Ins-IL-10+/NOD)N2 backcross mice.  相似文献   

16.
The insulin B (InsB) chain bears major type 1 diabetes-associated epitopes of significance for disease in humans and nonobese diabetic (NOD) mice. Somatic expression of InsB chain initiated early in life by plasmid inoculation resulted in substantial protection of female NOD mice against disease. This was associated with a T2 shift in spleen, expansion of IL-4-producing and, to a lesser extent, of IFN-gamma-secreting T cells in pancreatic lymph nodes, as well as intermolecular Th2 epitope spreading to glutamic acid decarboxylase determinants. A critical role of IL-4 for the Ag-specific protective effect triggered by plasmid administration was revealed in female IL-4(-/-) NOD mice that developed diabetes and higher Th1 responses. Coadministration of IL-4-expressing plasmid or extension of the vaccination schedule corrected the unfavorable response of male NOD mice to DNA vaccination with InsB chain. Thus, plasmid-mediated expression of the InsB chain early in diabetes-prone mice has the potential to prevent transition to full-blown disease depending on the presence of IL-4.  相似文献   

17.
Invariant NK T (iNKT) cells regulate immune responses, express NK cell markers and an invariant TCR, and recognize lipid Ags in a CD1d-restricted manner. Previously, we reported that activation of iNKT cells by alpha-galactosylceramide (alpha-GalCer) protects against type 1 diabetes (T1D) in NOD mice via an IL-4-dependent mechanism. To further investigate how iNKT cells protect from T1D, we analyzed whether iNKT cells require the presence of another subset(s) of regulatory T cells (Treg), such as CD4+ CD25+ Treg, for this protection. We found that CD4+ CD25+ T cells from NOD.CD1d(-/-) mice deficient in iNKT cell function similarly in vitro to CD4+ CD25+ T cells from wild-type NOD mice and suppress the proliferation of NOD T responder cells upon alpha-GalCer stimulation. Cotransfer of NOD diabetogenic T cells with CD4+ CD25+ Tregs from NOD mice pretreated with alpha-GalCer demonstrated that activated iNKT cells do not influence the ability of T(regs) to inhibit the transfer of T1D. In contrast, protection from T1D mediated by transfer of activated iNKT cells requires the activity of CD4+ CD25+ T cells, because splenocytes pretreated with alpha-GalCer and then inactivated by anti-CD25 of CD25+ cells did not protect from T1D. Similarly, mice inactivated of CD4+ CD25+ T cells before alpha-GalCer treatment were also not protected from T1D. Our data suggest that CD4+ CD25+ T cells retain their function during iNKT cell activation, and that the activity of CD4+ CD25+ Tregs is required for iNKT cells to transfer protection from T1D.  相似文献   

18.
Type I diabetes (T1D) susceptibility is inherited through multiple insulin-dependent diabetes (Idd) genes. NOD.B6 Idd3 congenic mice, introgressed with an Idd3 allele from T1D-resistant C57BL/6 mice (Idd3(B6)), show a marked resistance to T1D compared with control NOD mice. The protective function of the Idd3 locus is confined to the Il2 gene, whose expression is critical for naturally occurring CD4(+)Foxp3(+) regulatory T (nT(reg)) cell development and function. In this study, we asked whether Idd3(B6) protective alleles in the NOD mouse model confer T1D resistance by promoting the cellular frequency, function, or homeostasis of nT(reg) cells in vivo. We show that resistance to T1D in NOD.B6 Idd3 congenic mice correlates with increased levels of IL-2 mRNA and protein production in Ag-activated diabetogenic CD4(+) T cells. We also observe that protective IL2 allelic variants (Idd3(B6) resistance allele) also favor the expansion and suppressive functions of CD4(+)Foxp3(+) nT(reg) cells in vitro, as well as restrain the proliferation, IL-17 production, and pathogenicity of diabetogenic CD4(+) T cells in vivo more efficiently than control do nT(reg) cells. Lastly, the resistance to T1D in Idd3 congenic mice does not correlate with an augmented systemic frequency of CD4(+)Foxp3(+) nT(reg) cells but more so with the ability of protective IL2 allelic variants to promote the expansion of CD4(+)Foxp3(+) nT(reg) cells directly in the target organ undergoing autoimmune attack. Thus, protective, IL2 allelic variants impinge the development of organ-specific autoimmunity by bolstering the IL-2 producing capacity of self-reactive CD4(+) T cells and, in turn, favor the function and homeostasis of CD4(+)Foxp3(+) nT(reg) cells in vivo.  相似文献   

19.
T cells specific for proinsulin and islet-specific glucose-6-phosphatase catalytic subunit related protein (IGRP) induce diabetes in nonobese diabetic (NOD) mice. TCR transgenic mice with CD8(+) T cells specific for IGRP(206-214) (NOD8.3 mice) develop accelerated diabetes that requires CD4(+) T cell help. We previously showed that immune responses against proinsulin are necessary for IGRP(206-214)-specific CD8(+) T cells to expand. In this study, we show that diabetes development is dramatically reduced in NOD8.3 mice crossed to NOD mice tolerant to proinsulin (NOD-PI mice). This indicates that immunity to proinsulin is even required in the great majority of NOD8.3 mice that have a pre-existing repertoire of IGRP(206-214)-specific cells. However, protection from diabetes could be overcome by inducing islet inflammation either by a single dose of streptozotocin or anti-CD40 agonist Ab treatment. This suggests that islet inflammation can substitute for proinsulin-specific CD4(+) T cell help to activate IGRP(206-214)-specific T cells.  相似文献   

20.
Although B cells play a pathogenic role in the initiation of type 1 diabetes (T1D) in NOD mice, it is not known whether activated B cells can maintain tolerance and transfer protection from T1D. In this study, we demonstrate that i.v. transfusion of BCR-stimulated NOD spleen B cells into NOD mice starting at 5-6 wk of age both delays onset and reduces the incidence of T1D, whereas treatment initiated at 9 wk of age only delays onset of T1D. This BCR-activated B cell-induced protection from T1D requires IL-10 production by B cells, as transfusion of activated B cells from NOD.IL-10(-/-) mice does not confer protection from T1D. Consistent with this result, severe insulitis was observed in the islets of NOD recipients of transfused NOD.IL-10(-/-) BCR-stimulated B cells but not in the islets of NOD recipients of transfused BCR-stimulated NOD B cells. The therapeutic effect of transfused activated NOD B cells correlates closely with the observed decreased islet inflammation, reduced IFN-gamma production and increased production of IL-4 and IL-10 by splenocytes and CD4(+) T cells from NOD recipients of BCR-stimulated NOD B cells relative to splenocytes and CD4(+) T cells from PBS-treated control NOD mice. Our data demonstrate that transfused BCR-stimulated B cells can maintain long-term tolerance and protect NOD mice from T1D by an IL-10-dependent mechanism, and raise the possibility that i.v. transfusion of autologous IL-10-producing BCR-activated B cells may be used therapeutically to protect human subjects at risk for T1D.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号