首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The possible involvement of protein kinase C activation in regulating PAF-stimulated PLC activity was studied in rabbit platelets. PAF (100 nM for 5 seconds) stimulated incorporation of 32P into proteins and caused [3H]InsP3 levels to increase about 260% of control. These responses were compared after platelets were pretreated with either PAF, phorbol 12-myristate 13-acetate (PMA) or staurosporine and also after pretreatments with staurosporine followed by PAF or PMA. Pretreating platelets with staurosporine potentiated PAF-stimulated [3H]InsP3 levels by 54% and blocked protein phosphorylation. Pretreatments with PAF and PMA caused PAF-stimulated [3H]InsP3 levels to decrease to 115 and 136%, respectively. Staurosporine pretreatment blocked the decrease caused by the PMA pretreatment but not that by PAF. This study demonstrates that PAF-stimulated PLC activity is negatively affected by protein kinase C (PKC) activation and that inhibition of PKC activity did not prevent desensitization of PLC by PAF.  相似文献   

2.
The phospholipase C (PLC) pathway is the major signaling mechanism of photoactivation in invertebrate photoreceptors. Here we report the cloning of a cDNA encoding a 140-kDa retinal PLC that is uniquely expressed in squid photoreceptors. This cDNA encodes a protein with multiple distinct modular domains: PH, X and Y catalytic, and C2 domains, as well as G- and P-box motifs and two GTP/ATP binding motifs. The PLC was stimulated by activated squid Gq alpha but not by squid Gq beta gamma or mammalian beta gamma subunits. The PLC was inhibited by monophosphate, diphosphate and triphosphate nucleotides but not cyclic nucleosides. We also tested the ability of PLC-140 to regulate the GTPase activity of Gq alpha in the rhabdomeric membranes. Depletion of PLC-140 from the rhabdomeric membranes decreased the GTP hydrolysis but not GTP gamma S binding to the membranes. Reconstitution of purified PLC-140 with membranes accelerated Gq alpha GTPase activity by fivefold at a concentration of 2.5 microM. Our data suggest that PLC-140 plays an important role in both the activation and inactivation pathways of invertebrate visual transduction.  相似文献   

3.
Glycosylphosphatidylinositol-specific phospholipase D (GPI-PLD) (EC 3.1.4.50) from mammalian serum is a 115 kDa glycoprotein consisting of 816 amino acids. We found that C-terminal deletions of only two to five amino acids reduced GPI-PLD enzymatic activity by roughly 70% as compared to wild-type protein. C-terminal deletions of more than five amino acids resulted in a complete loss of GPI-PLD enzymatic activity. Point mutations at position 811 indicate that Tyr-811 may play a major role in maintaining the biological activity of GPI-PLD.  相似文献   

4.
Autophagy is a tightly regulated catabolic process, which is upregulated in cells in response to many different stress signals. Inhibition of mammalian target of rapmaycin complex 1 (mTORC1) is a crucial step in induction of autophagy, yet the mechanisms regulating the fine tuning of its activity are not fully understood. Here we show that death-associated protein kinase 2 (DAPK2), a Ca2+-regulated serine/threonine kinase, directly interacts with and phosphorylates mTORC1, and has a part in suppressing mTOR activity to promote autophagy induction. DAPK2 knockdown reduced autophagy triggered either by amino acid deprivation or by increases in intracellular Ca2+ levels. At the molecular level, DAPK2 depletion interfered with mTORC1 inhibition caused by these two stresses, as reflected by the phosphorylation status of mTORC1 substrates, ULK1 (unc-51-like kinase 1), p70 ribosomal S6 kinase and eukaryotic initiation factor 4E-binding protein 1. An increase in mTORC1 kinase activity was also apparent in unstressed cells that were depleted of DAPK2. Immunoprecipitated mTORC1 from DAPK2-depleted cells showed increased kinase activity in vitro, an indication that DAPK2 regulation of mTORC1 is inherent to the complex itself. Indeed, we found that DAPK2 associates with components of mTORC1, as demonstrated by co-immunoprecipitation with mTOR and its complex partners, raptor (regulatory-associated protein of mTOR) and ULK1. DAPK2 was also able to interact directly with raptor, as shown by recombinant protein-binding assay. Finally, DAPK2 was shown to phosphorylate raptor in vitro. This phosphorylation was mapped to Ser721, a site located within a highly phosphorylated region of raptor that has previously been shown to regulate mTORC1 activity. Thus, DAPK2 is a novel kinase of mTORC1 and is a potential new member of this multiprotein complex, modulating mTORC1 activity and autophagy levels under stress and steady-state conditions.Macroautophagy (hereafter referred to as autophagy) is a highly regulated intracellular bulk degradation process found ubiquitously in eukaryotes. During autophagy a double-membrane vesicle, termed an autophagosome, engulfs cytoplasmic materials, including whole organelles. The autophagosome is later fused with the lysosome and its content degraded by hydrolases.1 Basal levels of autophagy are maintained within the cell during steady state, and are involved in cell homeostasis activities such as turnover of long-lived proteins, preventing accumulation of protein aggregates, and removal of damaged cellular structures.2 Beyond this homeostatic function, autophagy is stimulated during various stress conditions, such as nutrient deprivation, intracellular Ca2+ increase, hypoxia, ER stress and oxidative stress, to ensure continuous cell survival under stress.3A critical step in the induction of autophagy comprises the inactivation of a key negative regulator of the process, the mammalian target of rapamycin (mTOR).4 mTOR is a conserved serine/threonine protein kinase that acts as a master regulator in the cell. mTOR forms a rapamycin-sensitive complex named mTORC1 with its binding partner raptor (regulatory-associated protein of mTOR), which mediates mTOR''s substrate presentation.5 mTORC1 senses nutrient availability, growth factors and energy levels, and, in response, regulates cell growth, metabolism and protein synthesis, mainly by phosphorylation of substrates involved in protein translation: the p70 ribosomal S6 kinase (p70S6K) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1). Under nutrient-rich conditions, mTORC1 suppresses autophagy to basal levels by phosphorylating and inhibiting the autophagy proteins ULK1 (unc-51-like kinase 1) and Atg13. Upon autophagic stimulus, mTORC1 activity is inhibited and the ULK1 complex is activated, leading to autophagy induction.6 The activity levels of mTORC1 are regulated by several mechanisms, such as interacting proteins, cellular localization and phosphorylation events. Raptor phosphorylation has been suggested as a mechanism by which upstream kinases such as AMPK,7 RSK8 and ULK19 can regulate mTORC1 activity.Death-associated protein kinase 2 (DAPK2; also named DRP-1) is a 42-kDa Ca2+/calmodulin (CaM)-regulated serine/threonine kinase,10 and a closely related homolog of DAPK, a gene originally discovered in an attempt to find positive regulators of cell death.11 DAPK2 was identified based on homology to the catalytic domain of DAPK. DAPK2 is a soluble cytoplasmatic protein, which triggers massive membrane blebbing and appearance of double-membrane autophagic vesicles upon its overexpression (for a review see Shiloh et al.12). DAPK2''s substrates and interacting proteins are mostly unknown, with the exception of the myosin II regulatory light chain, which has been shown to be an in vitro and in vivo substrate.13 Although many publications have studied DAPK, its substrates and its role in cell death and autophagy,14, 15 very little is known about DAPK2 substrates, cellular functions or the molecular pathways that it regulates.In this work, we studied the involvement of DAPK2 in the autophagic module. We identified DAPK2 as a novel interacting protein of mTORC1, and as a negative regulator of the complex both during steady-state growth conditions and in response to different stress autophagic signals. We identified mTOR''s binding partner, raptor, as a substrate of DAPK2, and found Ser721 as its phosphorylation site.  相似文献   

5.
Recently a putative mammalian neutral-sphingomyelinase was cloned [Tomiuk et al. (1998) Proc. Natl. Acad. Sci. USA 95, 3638-3643; GenBank accession number AJ222801]. We have overexpressed this enzyme in cultured cells and demonstrate, using four different tagged constructs, that it is localized at the endoplasmic reticulum and not at the plasma membrane. This localization precludes a role for enzyme AJ222801 in the sphingomyelin cycle. Furthermore, a recent publication demonstrated that this enzyme has lyso-platelet activating factor (PAF) phospholipase C activity [Sawai et al. (1999) J. Biol. Chem. 274, 38131-38139]. Together, these data suggest a role for enzyme AJ222801 in the regulation of PAF metabolism.  相似文献   

6.
Despite their physicochemical and mechanistic differences platelet activating factor (or acetylglycerylether phosphorylcholine; AGEPC) and thrombin, both platelet stimulatory agents, induce phosphoinositide turnover in platelets. We therefore investigated the stimulation of the phosphoinositide phosphodiesterase by these agents and questioned whether they evoked hydrolysis of the same or different pools of phosphoinositides. [3H]Inositol-labelled rabbit platelets were challenged with thrombin and/or AGEPC under a variety of protocols, and the phospholipase C mediated production of radioactive inositol monophosphate (IP); inositol bisphosphate (IP2) and inositol trisphosphate (IP3) was used as the parameter. AGEPC (1 X 10(-9) M) caused a transient maximum (5 to 6-fold) increase in [3H]IP3 at 5 s followed by a decrease. Thrombin (2 U/ml) elicited an increase in [3H]IP3 at a much slower rate than AGEPC; 2 fold at 5 s, 5 fold at 30 s and a maximum 6 to 8-fold at 2-5 min. Compared to AGEPC, thrombin stimulated generation of [3H]IP2 and [3H]IP were severalfold higher. When thrombin and AGEPC were added together to platelets there was no evidence for an additive increase in inositol polyphosphate levels except at earlier time points where increases were submaximal. When AGEPC was added at various time intervals after thrombin pretreatment, no additional increases in [3H]IP3 were observed over that maximally seen with thrombin or AGEPC alone. In another set of experiments, submaximal increases (about 1/4 and 1/2 of maximum) in [3H]IP3 were achieved by using selected concentrations of thrombin (0.1 U and 0.3 U, respectively) and then AGEPC (1 X 10(-9) M) was added for 5 s. Once again the increase in [3H]IP3 was close to the maximal level seen with thrombin or AGEPC individually. It is concluded that thrombin and AGEPC differentially activated phosphoinositide phosphodiesterase (phospholipase C) in rabbit platelets and that the stimulation of the phospholipase C by these two stimuli causes IP3 production via hydrolysis of a common pool of phosphatidylinositol 4,5-bisphosphate.  相似文献   

7.
1-O-Hexadecyl/octadecyl-2-acetyl-sn-glyceryl-3-phosphorylcholine (AGEPC), structurally identical with platelet activating factor, is a potent stimulus for rabbit platelet aggregation and serotonin secretion. AGEPC at concentrations between 10−10 and 10−8 M induced stimulation of rabbit platelet synthesis of thromboxane B2. The dose vs. response curve for platelet thromboxane B2 synthesis was displaced slightly towards higher stimulus concentrations compared to [3H]serotonin secretion, with half-maximal concentrations of 2.5 · 10−9 and 8 · 10t-10 M, respectively. Rates of thromboxane B2 synthesis and secretion were similar with a t12max of 4.0–4.5 s for both processes. AGEPC induced a decrease in platelet [14C]arachidonic acid in both phosphatidylinositol and phosphatidylcholine, although [14C]arachidonic acid turnover in phosphatidylcholine was not observed below 1 · 10−8 M AGEPC. Concomitantly, this decrease in phospholipid [14C]arachidonic acid was associated with a marked increase of radiolabel in platelet diacylglycerol and phosphatidic acid 15s after AGEPC addition, suggesting the possibility of a phospholipase C-diacylglycerol lipase mechanism of fatty acid cleavage. As observed previously with secretion and aggregation, removal of the 2-acetyl group from AGEPC abrogated all capacity of this molecule to stimulate platelet phospholipase. This study indicates that AGEPC (or platelet activating factor) activation of rabbit platelet phospholipase occurs in a time-course and concentration range similar to that required for [3H] serotonin secretion.  相似文献   

8.
The primary mesenchyme cells (PMCs) of the sea urchin embryo undergo a dramatic sequence of morphogenetic behaviors that culminates in the formation of the larval endoskeleton. Recent studies have identified components of a gene regulatory network that underlies PMC specification and differentiation. In previous work, we identified novel gene products expressed specifically by PMCs (Illies, M.R., Peeler, M.T., Dechtiaruk, A.M., Ettensohn, C.A., 2002. Identification and developmental expression of new biomineralization proteins in the sea urchin, Strongylocentrotus purpuratus. Dev. Genes Evol. 212, 419-431). Here, we show that one of these gene products, P16, plays an essential role in skeletogenesis. P16 is not required for PMC specification, ingression, migration, or fusion, but is essential for skeletal rod elongation. We have compared the predicted sequences of P16 from two species and show that this small, acidic protein is highly conserved in both structure and function. The predicted amino acid sequence of P16 and the subcellular localization of a GFP-tagged form of the protein suggest that P16 is enriched in the plasma membrane. It may function to receive signals required for skeletogenesis or may play a more direct role in the deposition of biomineral. Finally, we place P16 downstream of Alx1 in the PMC gene network, thereby linking the network to a specific “effector” protein involved in biomineralization.  相似文献   

9.
Epidermal growth factor (EGF) treatment of NIH 3T3 cells transfected with wild-type EGF receptor induced tyrosine phosphorylation of phospholipase C-gamma (PLC-gamma). The EGF receptor and PLC-gamma were found to be physically associated such that antibodies directed against PLC-gamma or the EGF receptor coimmunoprecipitated both proteins. The association between PLC-gamma and wild-type EGF receptor was dependent on the concentration of EGF, but EGF did not enhance the association between PLC-gamma and a kinase-negative mutant of the EGF receptor. Oligomerization of the EGF receptor was not sufficient to induce association of the EGF receptor with PLC-gamma, since the kinase-negative mutant receptor underwent normal dimerization in response to EGF yet did not associate with PLC-gamma. The form of PLC-gamma associated with the EGF receptor appeared to be primarily the non-tyrosine-phosphorylated form. It is concluded that the kinase activity of the EGF receptor is essential for association of PLC-gamma with the EGF receptor, possibly by stimulating receptor autophosphorylation.  相似文献   

10.
Phospholipase D1 (PLD1), which is the product of the SPO14 gene, has been shown to play a role in the process of polarized cell growth (PCG) during the pheromone response in Saccharomyces cerevisiae. PLD1 hydrolyzes phosphatidylcholine to produce phosphatidic acid (PA) and a free choline headgroup. This study investigated the interactions of PLD1 and PA with two proteins known to be involved in the cellular signaling leading to PCG in yeast, the small GTPase Cdc42p and the PAK family kinase Ste20p. Constitutively activated Cdc42p stimulates PLD1 activity. Protein-lipid binding blots confirmed the specific binding of Ste20p to the PLD1 product, PA. Finally, kinase activity assays provided evidence for the stimulation of Ste20p by PA. These findings highlight the important interactions among PLD1, Cdc42p and Ste20p during PCG in S. cerevisiae.  相似文献   

11.
Pollen lipids of a pine species were separated by thin layer chromatography systems. The purified neutral and polar lipid classes were examined for their possible platelet aggregation activity and for their effect on Platelet Activating Factor activity. The lipid fraction comigrating on thin layer chromatography with glycerylether standards was shown to have a remarkable inhibition of Platelet Activating Factor activity on washed rabbit platelets in a concentration of 4.5.10(-6) M. At a ten fold higher concentration these lipids also induced platelet aggregation.  相似文献   

12.
13.
A novel amidophosphonate analog of Platelet Activating Factor (PAF), trimethyl (3-phosphonopropyl)ammonium hydroxide (R)-mono[2-acetamido-3-(hexadecyloxy)propyl] ester (PAF-AP), was synthesized. A potent inhibitor of aggregation induced by Platelet Activating Factor, arachidonic acid, Ca2+-ionophore, ADP, and thrombin, PAF-AP had no or very little effect on aggregation induced by epinephrine and collagen. Inhibition of phospholipase A2 and C2 activity was suggested from suppression of release of [14C]-arachidonic acid from pre-labeled platelet glycerophospholipids.  相似文献   

14.
Rat brain phospholipase D1 (rPLD1) has two highly conserved motifs [H(X)K(X)4D, denoted HKD] located at the N-terminal and C-terminal halves, which are required for activity. Association of the two halves is essential for rPLD1 activity, which probably brings the two HKD domains together to form a catalytic center. In the present study, we find that an intact C-terminus is also essential for the catalytic activity of rPLD1. Serial deletion of the last four amino acids, EVWT, which are conserved in all mammalian PLD isoforms, abolished the catalytic activity of rPLD1. This loss of catalytic activity was not due to a lack of association of the N-terminal and C-terminal halves. Mutations of the last three amino acids showed that substitutions with charged or less hydrophobic amino acids all reduced PLD activity. For example, mutations of Thr1036 and Val1034 to Asp or Lys caused marked inactivation, whereas mutation to other amino acids had less effect. Mutation of Trp1035 to Leu, Ala, His or Tyr caused complete inactivation, whereas mutation of Glu1033 to Ala enhanced activity. The size of the amino acids at the C-terminus also affected the catalytic activity of PLD, reduced activity being observed with conservative mutations within the EVWT sequence (such as T/S, V/L or W/F). The enzyme was also inactivated by the addition of Ala or Val to the C-terminus of this sequence. Interestingly, the inactive C-terminal mutants could be complemented by cotransfection with a wild-type C-terminal half to restore PLD activity in vivo. These data demonstrate that the integrity of the C-terminus of rPLD1 is essential for its catalytic activity. Important features are the hydrophobicity, charge and size of the four conserved C-terminal amino acids. It is proposed that these play important roles in maintaining a functional catalytic structure by interacting with a specific domain within rPLD1.  相似文献   

15.
Preincubation of pulmonary microvascular endothelial cells (PMVECs) with platelet-activating factor (PAF) for 3.5 h increased the adhesion rate of polymorphonuclear leukocytes (PMNs) to PMVECs from 57.3% to 72.8% (p < 0.01). Preincubation of PMNs with PAF also increased PMN-PMVEC adhesion rate. All-trans retinoic acid (RA) blocked the adherence of untreated PMNs to PAF-pretreated PMVECs but not the adherence of PAF-pretreated PMNs to untreated PMVECs. PAF increased the expression of intercellular adhesion molecule-1 (ICAM-1) and E-selection (ELAM-1) on PMVECs, PMN chemotaxis to zymosan-activated serum and histamine, and PMN aggregation and the release of acid phosphatase from PMNs. Co-incubation of RA inhibited PAF-induced PMN aggregation, the release of acid phosphatase from PMNs, and PMN chemotaxis to zymosan-activated serum and histamine while the expression of ICAM-1 and ELAM-1 did not change. Our results suggest that RA can be used to ameliorate PMN-mediated inflammation.  相似文献   

16.
Downregulation of protein kinase C delta (PKC delta) by treatment with the tumor-promoting phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) transforms cells that overexpress the non-receptor class tyrosine kinase c-Src (Z. Lu et al., Mol. Cell. Biol. 17:3418-3428, 1997). We extended these studies to cells overexpressing a receptor class tyrosine kinase, the epidermal growth factor (EGF) receptor (EGFR cells); like c-Src, the EGF receptor is overexpressed in several human tumors. In contrast with expectations, downregulation of PKC isoforms with TPA did not transform the EGFR cells; however, treatment with EGF did transform these cells. Since TPA downregulates all phorbol ester-responsive PKC isoforms, we examined the effects of PKC delta- and PKC alpha-specific inhibitors and the expression of dominant negative mutants for both PKC delta and alpha. Consistent with a tumor-suppressing function for PKC delta, the PKC delta-specific inhibitor rottlerin and a dominant negative PKC delta mutant transformed the EGFR cells in the absence of EGF. In contrast, the PKC alpha-specific inhibitor Go6976 and expression of a dominant negative PKC alpha mutant blocked the transformed phenotype induced by both EGF and PKC delta inhibition. Interestingly, both rottlerin and EGF induced substantial increases in phospholipase D (PLD) activity, which is commonly elevated in response to mitogenic stimuli. The elevation of PLD activity in response to inhibiting PKC delta, like transformation, was dependent upon PKC alpha and restricted to the EGFR cells. These data demonstrate that PKC isoforms alpha and delta have antagonistic effects on both transformation and PLD activity and further support a tumor suppressor role for PKC delta that may be mediated by suppression of tyrosine kinase-dependent increases in PLD activity.  相似文献   

17.
The phosphatase Wip1 attenuates the DNA damage response (DDR) by removing phosphorylation marks from a number of DDR proteins (p53, MDM2, Chk1/2, p38). Wip1 also dephosphorylates and inactivates RelA. Notably, LZAP, a putative tumor suppressor, has been linked to dephosphorylation of several of these substrates, including RelA, p38, Chk1, and Chk2. LZAP has no known catalytic activity or functional motifs, suggesting that it exerts its effects through interaction with other proteins. Here we show that LZAP binds Wip1 and stimulates its phosphatase activity. LZAP had been previously shown to bind many Wip1 substrates (RelA, p38, Chk1/2), and our results show that LZAP also binds the previously identified Wip1 substrate, MDM2. This work identifies 2 novel Wip1 substrates, ERK1 and HuR, and demonstrates that HuR is a binding partner of LZAP. Pleasingly, LZAP potentiated Wip1 catalytic activity toward each substrate tested, regardless of whether full-length substrates or phosphopeptides were utilized. Since this effect was observed on ERK1, which does not bind LZAP, as well as for each of 7 peptides tested, we hypothesize that LZAP binding to the substrate is not required for this effect and that LZAP directly binds Wip1 to augment its phosphatase activity.  相似文献   

18.
Compound 48/80 inhibited phosphatidylinositol-specific phospholipase C activity from human platelets. Whereas 1 microgram/ml of compound 48/80 slightly stimulated Ca2+-dependent phospholipase A2, higher concentrations led to dose-dependent inhibition of this platelet enzyme. This biphasic effect was confirmed with phospholipases A2 purified from rat liver and human synovial fluid. The aggregation of human platelets induced by ADP and PAF-acether was inhibited by compound 48/80, whereas the aggregation induced by ionophore A23187 was not modified by this compound. These results demonstrate that the inhibition of platelet aggregation by compound 48/80 is not due solely to effects on calmodulin as previously reported, but that inhibition of phospholipases and probably arachidonate mobilization may also be involved.  相似文献   

19.
SPO14, encoding the major Saccharomyces cerevisiae phospholipase D (PLD), is essential for sporulation and mediates synthesis of the new membrane that encompasses the haploid nuclei that arise through meiotic divisions. PLD catalyzes the hydrolysis of phosphatidylcholine to phosphatidic acid (PA) and choline. PA stimulates Arf-GTPase-activating proteins (Arf-GAPs), which are involved in membrane trafficking events and actin cytoskeletal function. To determine if Spo14p-generated PA mediates its biological response through Arf-GAPs, we analyzed the sporulation efficiencies of cells deleted for each of the five known and potential yeast Arf-GAPs. Only gcs1delta mutants display a sporulation defect similar to that of spo14 mutants: cells deleted for GCS1 initiate the sporulation program but are defective in synthesis of the prospore membrane. Endosome-to-vacuole transport is also impaired in gcs1delta cells during sporulation. Furthermore, Arf-GAP catalytic activity, but not the pleckstrin homology domain, is required for both prospore membrane formation and endosome-to-vacuole trafficking. An examination of Gcs1p-green fluorescent protein revealed that it is a soluble protein. Interestingly, cells deleted for GCS1 have reduced levels of Spo14p-generated PA. Taken together, these results indicate that GCS1 is essential for sporulation and suggest that GCS1 positively regulates SPO14.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号