首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Targeted Next Generation Sequencing (NGS) offers a way to implement testing of multiple genetic aberrations in diagnostic pathology practice, which is necessary for personalized cancer treatment. However, no standards regarding input material have been defined. This study therefore aimed to determine the effect of the type of input material (e.g. formalin fixed paraffin embedded (FFPE) versus fresh frozen (FF) tissue) on NGS derived results. Moreover, this study aimed to explore a standardized analysis pipeline to support consistent clinical decision-making.

Method

We used the Ion Torrent PGM sequencing platform in combination with the Ion AmpliSeq Cancer Hotspot Panel v2 to sequence frequently mutated regions in 50 cancer related genes, and validated the NGS detected variants in 250 FFPE samples using standard diagnostic assays. Next, 386 tumour samples were sequenced to explore the effect of input material on variant detection variables. For variant calling, Ion Torrent analysis software was supplemented with additional variant annotation and filtering.

Results

Both FFPE and FF tissue could be sequenced reliably with a sensitivity of 99.1%. Validation showed a 98.5% concordance between NGS and conventional sequencing techniques, where NGS provided both the advantage of low input DNA concentration and the detection of low-frequency variants. The reliability of mutation analysis could be further improved with manual inspection of sequence data.

Conclusion

Targeted NGS can be reliably implemented in cancer diagnostics using both FFPE and FF tissue when using appropriate analysis settings, even with low input DNA.  相似文献   

2.
3.
4.
5.

Background

Predicting the prognosis of prostate cancer disease through gene expression analysis is receiving increasing interest. In many cases, such analyses are based on formalin-fixed, paraffin embedded (FFPE) core needle biopsy material on which Gleason grading for diagnosis has been conducted. Since each patient typically has multiple biopsy samples, and since Gleason grading is an operator dependent procedure known to be difficult, the impact of the operator''s choice of biopsy was evaluated.

Methods

Multiple biopsy samples from 43 patients were evaluated using a previously reported gene signature of IGFBP3, F3 and VGLL3 with potential prognostic value in estimating overall survival at diagnosis of prostate cancer. A four multiplex one-step qRT-PCR test kit, designed and optimized for measuring the signature in FFPE core needle biopsy samples was used. Concordance of gene expression levels between primary and secondary Gleason tumor patterns, as well as benign tissue specimens, was analyzed.

Results

The gene expression levels of IGFBP3 and F3 in prostate cancer epithelial cell-containing tissue representing the primary and secondary Gleason patterns were high and consistent, while the low expressed VGLL3 showed more variation in its expression levels.

Conclusion

The assessment of IGFBP3 and F3 gene expression levels in prostate cancer tissue is independent of Gleason patterns, meaning that the impact of operator''s choice of biopsy is low.  相似文献   

6.

Background

A previously reported expression signature of three genes (IGFBP3, F3 and VGLL3) was shown to have potential prognostic value in estimating overall and cancer-specific survivals at diagnosis of prostate cancer in a pilot cohort study using freshly frozen Fine Needle Aspiration (FNA) samples.

Methods

We carried out a new cohort study with 241 prostate cancer patients diagnosed from 2004–2007 with a follow-up exceeding 6 years in order to verify the prognostic value of gene expression signature in formalin fixed paraffin embedded (FFPE) prostate core needle biopsy tissue samples. The cohort consisted of four patient groups with different survival times and death causes. A four multiplex one-step RT-qPCR test kit, designed and optimized for measuring the expression signature in FFPE core needle biopsy samples, was used. In archive FFPE biopsy samples the expression differences of two genes (IGFBP3 and F3) were measured. The survival time predictions using the current clinical parameters only, such as age at diagnosis, Gleason score, PSA value and tumor stage, and clinical parameters supplemented with the expression levels of IGFBP3 and F3, were compared.

Results

When combined with currently used clinical parameters, the gene expression levels of IGFBP3 and F3 are improving the prediction of survival time as compared to using clinical parameters alone.

Conclusion

The assessment of IGFBP3 and F3 gene expression levels in FFPE prostate cancer tissue would provide an improved survival prediction for prostate cancer patients at the time of diagnosis.  相似文献   

7.
8.

Background

Cancer re-sequencing programs rely on DNA isolated from fresh snap frozen tissues, the preparation of which is combined with additional preservation efforts. Tissue samples at pathology departments are routinely stored as formalin-fixed and paraffin-embedded (FFPE) samples and their use would open up access to a variety of clinical trials. However, FFPE preparation is incompatible with many down-stream molecular biology techniques such as PCR based amplification methods and gene expression studies.

Methodology/Principal Findings

Here we investigated the sample quality requirements of FFPE tissues for massively parallel short-read sequencing approaches. We evaluated key variables of pre-fixation, fixation related and post-fixation processes that occur in routine medical service (e.g. degree of autolysis, duration of fixation and of storage). We also investigated the influence of tissue storage time on sequencing quality by using material that was up to 18 years old. Finally, we analyzed normal and tumor breast tissues using the Sequencing by Synthesis technique (Illumina Genome Analyzer, Solexa) to simultaneously localize genome-wide copy number alterations and to detect genomic variations such as substitutions and point-deletions and/or insertions in FFPE tissue samples.

Conclusions/Significance

The application of second generation sequencing techniques on small amounts of FFPE material opens up the possibility to analyze tissue samples which have been collected during routine clinical work as well as in the context of clinical trials. This is in particular important since FFPE samples are amply available from surgical tumor resections and histopathological diagnosis, and comprise tissue from precursor lesions, primary tumors, lymphogenic and/or hematogenic metastases. Large-scale studies using this tissue material will result in a better prediction of the prognosis of cancer patients and the early identification of patients which will respond to therapy.  相似文献   

9.

Purpose

Quantifying chromosomal instability (CIN) has both prognostic and predictive clinical utility in breast cancer. In order to establish a robust and clinically applicable gene expression-based measure of CIN, we assessed the ability of four qPCR quantified genes selected from the 70-gene Chromosomal Instability (CIN70) expression signature to stratify outcome in patients with grade 2 breast cancer.

Methods

AURKA, FOXM1, TOP2A and TPX2 (CIN4), were selected from the CIN70 signature due to their high level of correlation with histological grade and mean CIN70 signature expression in silico. We assessed the ability of CIN4 to stratify outcome in an independent cohort of patients diagnosed between 1999 and 2002. 185 formalin-fixed, paraffin-embedded (FFPE) samples were included in the qPCR measurement of CIN4 expression. In parallel, ploidy status of tumors was assessed by flow cytometry. We investigated whether the categorical CIN4 score derived from the CIN4 signature was correlated with recurrence-free survival (RFS) and ploidy status in this cohort.

Results

We observed a significant association of tumor proliferation, defined by Ki67 and mitotic index (MI), with both CIN4 expression and aneuploidy. The CIN4 score stratified grade 2 carcinomas into good and poor prognostic cohorts (mean RFS: 83.8±4.9 and 69.4±8.2 months, respectively, p = 0.016) and its predictive power was confirmed by multivariate analysis outperforming MI and Ki67 expression.

Conclusions

The first clinically applicable qPCR derived measure of tumor aneuploidy from FFPE tissue, stratifies grade 2 tumors into good and poor prognosis groups.  相似文献   

10.

Background

Detection of molecular tumor heterogeneity has become of paramount importance with the advent of targeted therapies. Analysis for detection should be comprehensive, timely and based on routinely available tumor samples.

Aim

To evaluate the diagnostic potential of targeted multigene next-generation sequencing (TM-NGS) in characterizing gastrointestinal cancer molecular heterogeneity.

Methods

35 gastrointestinal tract tumors, five of each intestinal type gastric carcinomas, pancreatic ductal adenocarcinomas, pancreatic intraductal papillary mucinous neoplasms, ampulla of Vater carcinomas, hepatocellular carcinomas, cholangiocarcinomas, pancreatic solid pseudopapillary tumors were assessed for mutations in 46 cancer-associated genes, using Ion Torrent semiconductor-based TM-NGS. One ampulla of Vater carcinoma cell line and one hepatic carcinosarcoma served to assess assay sensitivity. TP53, PIK3CA, KRAS, and BRAF mutations were validated by conventional Sanger sequencing.

Results

TM-NGS yielded overlapping results on matched fresh-frozen and formalin-fixed paraffin-embedded (FFPE) tissues, with a mutation detection limit of 1% for fresh-frozen high molecular weight DNA and 2% for FFPE partially degraded DNA. At least one somatic mutation was observed in all tumors tested; multiple alterations were detected in 20/35 (57%) tumors. Seven cancers displayed significant differences in allelic frequencies for distinct mutations, indicating the presence of intratumor molecular heterogeneity; this was confirmed on selected samples by immunohistochemistry of p53 and Smad4, showing concordance with mutational analysis.

Conclusions

TM-NGS is able to detect and quantitate multiple gene alterations from limited amounts of DNA, moving one step closer to a next-generation histopathologic diagnosis that integrates morphologic, immunophenotypic, and multigene mutational analysis on routinely processed tissues, essential for personalized cancer therapy.  相似文献   

11.

Purpose

Insulin-like growth factor (IGF) signaling through human insulin receptor isoform A (IR-A) contributes to tumorigenesis and intrinsic resistance to anti-IGF1R therapy. In the present study, we (a) developed quantitative TaqMan real time-PCR-based assays (qRT-PCR) to measure human insulin receptor isoforms with high specificity, (b) evaluated isoform expression levels in molecularly-defined breast cancer subtypes, and (c) identified the IR-A:IR-B mRNA ratio as a potential biomarker guiding patient stratification for anti-IGF therapies.

Experimental Design

mRNA expression levels of IR-A and IR-B were measured in 42 primary breast cancers and 19 matched adjacent normal tissues with TaqMan qRT-PCR assays. The results were further confirmed in 165 breast cancers. The tumor samples were profiled using whole genome microarrays and subsequently subtyped using the PAM50 breast cancer gene signature. The relationship between the IR-A:IR-B ratio and cancer subtype, as well as markers of proliferation were characterized.

Results

The mRNA expression levels of IR-A in the breast tumors were similar to those observed in the adjacent normal tissues, while the mRNA levels of IR-B were significantly decreased in tumors. The IR-A:IR-B ratio was significantly higher in luminal B breast cancer than in luminal A. Strong concordance between the IR-A:IR-B ratio and the composite Oncotype DX proliferation score was observed for stratifying the latter two breast cancer subtypes.

Conclusions

The reduction in IR-B expression is the key to the altered IR-A:IR-B ratio observed in breast cancer. The IR-A:IR-B ratio may have biomarker utility in guiding a patient stratification strategy for an anti-IGF therapeutic.  相似文献   

12.
《PloS one》2009,4(11)

Background

Detection of critical cancer gene mutations in clinical tumor specimens may predict patient outcomes and inform treatment options; however, high-throughput mutation profiling remains underdeveloped as a diagnostic approach. We report the implementation of a genotyping and validation algorithm that enables robust tumor mutation profiling in the clinical setting.

Methodology

We developed and implemented an optimized mutation profiling platform (“OncoMap”) to interrogate ∼400 mutations in 33 known oncogenes and tumor suppressors, many of which are known to predict response or resistance to targeted therapies. The performance of OncoMap was analyzed using DNA derived from both frozen and FFPE clinical material in a diverse set of cancer types. A subsequent in-depth analysis was conducted on histologically and clinically annotated pediatric gliomas. The sensitivity and specificity of OncoMap were 93.8% and 100% in fresh frozen tissue; and 89.3% and 99.4% in FFPE-derived DNA. We detected known mutations at the expected frequencies in common cancers, as well as novel mutations in adult and pediatric cancers that are likely to predict heightened response or resistance to existing or developmental cancer therapies. OncoMap profiles also support a new molecular stratification of pediatric low-grade gliomas based on BRAF mutations that may have immediate clinical impact.

Conclusions

Our results demonstrate the clinical feasibility of high-throughput mutation profiling to query a large panel of “actionable” cancer gene mutations. In the future, this type of approach may be incorporated into both cancer epidemiologic studies and clinical decision making to specify the use of many targeted anticancer agents.  相似文献   

13.

Background

DNA methylation (DNAm) levels can be used to predict the chronological age of tissues; however, the characteristics of DNAm age signatures in normal and cancer tissues are not well studied using multiple studies.

Results

We studied approximately 4000 normal and cancer samples with multiple tissue types from diverse studies, and using linear and nonlinear regression models identified reliable tissue type-invariant DNAm age signatures. A normal signature comprising 127 CpG loci was highly enriched on the X chromosome. Age-hypermethylated loci were enriched for guanine–and-cytosine-rich regions in CpG islands (CGIs), whereas age-hypomethylated loci were enriched for adenine–and-thymine-rich regions in non-CGIs. However, the cancer signature comprised only 26 age-hypomethylated loci, none on the X chromosome, and with no overlap with the normal signature. Genes related to the normal signature were enriched for aging-related gene ontology terms including metabolic processes, immune system processes, and cell proliferation. The related gene products of the normal signature had more than the average number of interacting partners in a protein interaction network and had a tendency not to interact directly with each other. The genomic sequences of the normal signature were well conserved and the age-associated DNAm levels could satisfactorily predict the chronological ages of tissues regardless of tissue type. Interestingly, the age-associated DNAm increases or decreases of the normal signature were aberrantly accelerated in cancer samples.

Conclusion

These tissue type-invariant DNAm age signatures in normal and cancer can be used to address important questions in developmental biology and cancer research.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-997) contains supplementary material, which is available to authorized users.  相似文献   

14.

Introduction

The classification of breast cancer patients into risk groups provides a powerful tool for the identification of patients who will benefit from aggressive systemic therapy. The analysis of microarray data has generated several gene expression signatures that improve diagnosis and allow risk assessment. There is also evidence that cell proliferation-related genes have a high predictive power within these signatures.

Methods

We thus constructed a gene expression signature (the DM signature) using the human orthologues of 108 Drosophila melanogaster genes required for either the maintenance of chromosome integrity (36 genes) or mitotic division (72 genes).

Results

The DM signature has minimal overlap with the extant signatures and is highly predictive of survival in 5 large breast cancer datasets. In addition, we show that the DM signature outperforms many widely used breast cancer signatures in predictive power, and performs comparably to other proliferation-based signatures. For most genes of the DM signature, an increased expression is negatively correlated with patient survival. The genes that provide the highest contribution to the predictive power of the DM signature are those involved in cytokinesis.

Conclusion

This finding highlights cytokinesis as an important marker in breast cancer prognosis and as a possible target for antimitotic therapies.  相似文献   

15.

Background

The growing field of formalin-fixed paraffin-embedded (FFPE) tissue proteomics holds promise for improving translational research. Direct tissue trypsinization (DT) and protein extraction followed by in solution digestion (ISD) or filter-aided sample preparation (FASP) are the most common workflows for shotgun analysis of FFPE samples, but a critical comparison of the different methods is currently lacking.

Experimental design

DT, FASP and ISD workflows were compared by subjecting to the same label-free quantitative approach three independent technical replicates of each method applied to FFPE liver tissue. Data were evaluated in terms of method reproducibility and protein/peptide distribution according to localization, MW, pI and hydrophobicity.

Results

DT showed lower reproducibility, good preservation of high-MW proteins, a general bias towards hydrophilic and acidic proteins, much lower keratin contamination, as well as higher abundance of non-tryptic peptides. Conversely, FASP and ISD proteomes were depleted in high-MW proteins and enriched in hydrophobic and membrane proteins; FASP provided higher identification yields, while ISD exhibited higher reproducibility.

Conclusions

These results highlight that diverse sample preparation strategies provide significantly different proteomic information, and present typical biases that should be taken into account when dealing with FFPE samples. When a sufficient amount of tissue is available, the complementary use of different methods is suggested to increase proteome coverage and depth.  相似文献   

16.

Introduction

Gene profiling may improve prognostic accuracy in patients with early breast cancer, but this technology is not widely available. We used commercial assays for qRT-PCR to assess the performance of the gene profiles included in the 70-Gene Signature, the Recurrence Score and the Two-Gene Ratio.

Methods

153 patients with early breast cancer and a minimum follow-up of 5 years were included. All tumours were positive for hormonal receptors and 38% had positive lymph nodes; 64% of patients received adjuvant chemotherapy. RNA was extracted from formalin-fixed paraffin-embedded (FFPE) specimens using a specific kit. qRT-PCR amplifications were performed with TaqMan Gene Expression Assays products. We applied the three gene-expression-based models to our patient cohort to compare the predictions derived from these gene sets.

Results

After a median follow-up of 91 months, 22% of patients relapsed. The distant metastasis-free survival (DMFS) at 5 years was calculated for each profile. For the 70-Gene Signature, DMFS was 95% -good prognosis- versus 66% -poor prognosis. In the case of the Recurrence Score, DMFS was 98%, 81% and 69% for low, intermediate and high-risk groups, respectively. Finally, for the Two-Gene Ratio, DMFS was 86% versus 70%. The 70-Gene Signature and the Recurrence Score were highly informative in identifying patients with distant metastasis, even in multivariate analysis.

Conclusion

Commercially available assays for qRT-PCR can be used to assess the prognostic utility of previously published gene expression profiles in FFPE material from patients with early breast cancer. Our results, with the use of a different platform and with different material, confirm the robustness of the 70-Gene Signature and represent an independent test for the Recurrence Score, using different primer/probe sets.  相似文献   

17.

Background

Formalin-fixed, paraffin-embedded (FFPE) tissues represent the most abundant resource of archived human specimens in pathology. Such tissue specimens are emerging as a highly valuable resource for translational proteomic studies. In quantitative proteomic analysis, reductive di-methylation of primary amines using stable isotopic formaldehyde variants is increasingly used due to its robustness and cost-effectiveness.

Results

In the present study we show for the first time that isotopic amine dimethylation can be used in a straightforward manner for the quantitative proteomic analysis of FFPE specimens without interference from formalin employed in the FFPE process. Isotopic amine dimethylation of FFPE specimens showed equal labeling efficiency as for cryopreserved specimens. For both FFPE and cryopreserved specimens, differential labeling of identical samples yielded highly similar ratio distributions within the expected range for dimethyl labeling. In an initial application, we profiled proteome changes in clear cell renal cell carcinoma (ccRCC) FFPE tissue specimens compared to adjacent non–malignant renal tissue. Our findings highlight increased levels of glyocolytic enzymes, annexins as well as ribosomal and proteasomal proteins.

Conclusion

Our study establishes isotopic amine dimethylation as a versatile tool for quantitative proteomic analysis of FFPE specimens and underlines proteome alterations in ccRCC.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1768-x) contains supplementary material, which is available to authorized users.  相似文献   

18.
19.

Background

Retrospective studies of archived human specimens, with known clinical follow-up, are used to identify predictive and prognostic molecular markers of disease. Due to biochemical differences, however, formalin-fixed paraffin-embedded (FFPE) DNA and RNA have generally been extracted separately from either different tissue sections or from the same section by dividing the digested tissue. The former limits accurate correlation whilst the latter is impractical when utilizing rare or limited archived specimens.

Principal Findings

For effective recovery of genomic DNA and total RNA from a single FFPE specimen, without splitting the proteinase-K digested tissue solution, we optimized a co-extraction method by using TRIzol and purifying DNA from the lower aqueous and RNA from the upper organic phases. Using a series of seven different archived specimens, we evaluated the total amounts of genomic DNA and total RNA recovered by our TRIzol-based co-extraction method and compared our results with those from two commercial kits, the Qiagen AllPrep DNA/RNA FFPE kit, for co-extraction, and the Ambion RecoverAll™ Total Nucleic Acid Isolation kit, for separate extraction of FFPE-DNA and -RNA. Then, to accurately assess the quality of DNA and RNA co-extracted from a single FFPE specimen, we used qRT-PCR, gene expression profiling and methylation assays to analyze microRNAs, mRNAs, and genomic DNA recovered from matched fresh and FFPE MCF10A cells. These experiments show that the TRIzol-based co-extraction method provides larger amounts of FFPE-DNA and –RNA than the two other methods, and particularly provides higher quality microRNAs and genomic DNA for subsequent molecular analyses.

Significance

We determined that co-extraction of genomic DNA and total RNA from a single FFPE specimen is an effective recovery approach to obtain high-quality material for parallel molecular and high-throughput analyses. Our optimized approach provides the option of collecting DNA, which would otherwise be discarded or degraded, for additional or subsequent studies.  相似文献   

20.

Introduction

Heredity is estimated to cause at least 20% of colorectal cancer. The hereditary nonpolyposis colorectal cancer subset is divided into Lynch syndrome and familial colorectal cancer type X (FCCTX) based on presence of mismatch repair (MMR) gene defects.

Purpose

We addressed the gene expression signatures in colorectal cancer linked to Lynch syndrome and FCCTX with the aim to identify candidate genes and to map signaling pathways relevant in hereditary colorectal carcinogenesis.

Experimental design

The 18 k whole-genome c-DNA-mediated annealing, selection, extension, and ligation (WG-DASL) assay was applied to 123 colorectal cancers, including 39 Lynch syndrome tumors and 37 FCCTX tumors. Target genes were technically validated using real-time quantitative RT-PCR (qRT-PCR) and the expression signature was validated in independent datasets.

Results

Colorectal cancers linked to Lynch syndrome and FCCTX showed distinct gene expression profiles, which by significance analysis of microarrays (SAM) differed by 2188 genes. Functional pathways involved were related to G-protein coupled receptor signaling, oxidative phosphorylation, and cell cycle function and mitosis. qRT-PCR verified altered expression of the selected genes NDUFA9, AXIN2, MYC, DNA2 and H2AFZ. Application of the 2188-gene signature to independent datasets showed strong correlation to MMR status.

Conclusion

Distinct genetic profiles and deregulation of different canonical pathways apply to Lynch syndrome and FCCTX and key targets herein may be relevant to pursue for refined diagnostic and therapeutic strategies in hereditary colorectal cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号