首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effect of low pH on single skeletal muscle myosin mechanics and kinetics   总被引:1,自引:0,他引:1  
Acidosis (low pH) is the oldest putative agent of muscular fatigue, but the molecular mechanism underlying its depressive effect on muscular performance remains unresolved. Therefore, the effect of low pH on the molecular mechanics and kinetics of chicken skeletal muscle myosin was studied using in vitro motility (IVM) and single molecule laser trap assays. Decreasing pH from 7.4 to 6.4 at saturating ATP slowed actin filament velocity (V(actin)) in the IVM by 36%. Single molecule experiments, at 1 microM ATP, decreased the average unitary step size of myosin (d) from 10 +/- 2 nm (pH 7.4) to 2 +/- 1 nm (pH 6.4). Individual binding events at low pH were consistent with the presence of a population of both productive (average d = 10 nm) and nonproductive (average d = 0 nm) actomyosin interactions. Raising the ATP concentration from 1 microM to 1 mM at pH 6.4 restored d (9 +/- 3 nm), suggesting that the lifetime of the nonproductive interactions is solely dependent on the [ATP]. V(actin), however, was not restored by raising the [ATP] (1-10 mM) in the IVM assay, suggesting that low pH also prolongs actin strong binding (t(on)). Measurement of t(on) as a function of the [ATP] in the single molecule assay suggested that acidosis prolongs t(on) by slowing the rate of ADP release. Thus, in a detachment limited model of motility (i.e., V(actin) approximately d/t(on)), a slowed rate of ADP release and the presence of nonproductive actomyosin interactions could account for the acidosis-induced decrease in V(actin), suggesting a molecular explanation for this component of muscular fatigue.  相似文献   

2.
Hooft AM  Maki EJ  Cox KK  Baker JE 《Biochemistry》2007,46(11):3513-3520
We use an in vitro motility assay to determine the biochemical basis for a hypermotile state of myosin-based actin sliding. It is widely assumed that the sole biochemical determinant of actin-sliding velocities, V, is actin-myosin detachment kinetics (1/tauon), yet we recently reported that, above a critical ATP concentration of approximately 100 microM, V exceeds the detachment limit by more than 2-fold. To determine the biochemical basis for this hypermotile state, we measure the effects of ATP and inorganic phosphate, Pi, on V and observe that at low [ATP] V decreases as ln [Pi], whereas above 100 microM ATP the hypermotile V is independent of Pi. The ln [Pi] dependence of V at low [ATP] is consistent with a macroscopic model of muscle shortening, similar to Hill's contractile component, which predicts that V varies linearly with an internal force (Hill's active state) that drives actin movement against the viscous drag of myosin heads strongly bound to actin (Hill's dashpot). At high [ATP], we suggest that the hypermotile V is caused by shear thinning of the resistive population of strongly bound myosin heads. Our data and analysis indicate that, in addition to contributions from tauon and myosin's step size, d, V is influenced by the biochemistry of myosin's working step as well as resistive properties of actin and myosin.  相似文献   

3.
Actin stimulates myosin's activity by inducing structural alterations that correlate with the transition from a weakly to a strongly bound state, during which time inorganic phosphate (P(i)) is released from myosin's active site. The surface loop at the 50/20-kDa junction of myosin (loop 2) is part of the actin interface. Here we demonstrate that elimination of two highly conserved lysines at the C-terminal end of loop 2 specifically blocks the ability of heavy meromyosin to undergo a weak to strong binding transition with actin in the presence of ATP. Removal of these lysines has no effect on strong binding in the absence of nucleotide, on the rate of ADP binding or release, or on the basal ATPase activity. We further show that the 16 amino acids of loop 2 preceding the lysine-rich region are not essential for actin activation, although they do modulate myosin's affinity for actin in the presence of ATP. We conclude that interaction of the conserved lysines with acidic residues in subdomain 1 of actin either triggers a structural change or stabilizes a conformation that is necessary for actin-activated release of P(i) and completion of the ATPase cycle.  相似文献   

4.
Gly 680 of Dictyostelium myosin II sits at a critical position within the reactive thiol helices. We have previously shown that G680V mutant subfragment 1 largely remains in strongly actin-bound states in the presence of ATP. We speculated that acto-G680V subfragment 1 complexes accumulate in the A.M.ADP.P(i) state on the basis of the biochemical phenotypes conferred by mutations which suppress the G680V mutation in vivo [Wu, Y., et al. (1999) Genetics 153, 107-116]. Here, we report further characterization of the interaction between actin and G680V subfragment 1. Light scattering data demonstrate that the majority of G680V subfragment 1 is bound to actin in the presence of ATP. These acto-G680V subfragment 1 complexes in the presence of ATP do not efficiently quench the fluorescence of pyrene-actin, unlike those in rigor complexes or in the presence of ADP alone. Kinetic analyses demonstrated that phosphate release, but not ATP hydrolysis or ADP release, is very slow and rate limiting in the acto-G680V subfragment 1 ATPase cycle. Single turnover kinetic analysis demonstrates that, during ATP hydrolysis by the acto-G680V subfragment 1 complex, quenching of pyrene fluorescence significantly lags the increase of light scattering. This is unlike the situation with wild-type subfragment 1, where the two signals have similar rate constants. These data support the hypothesis that the main intermediate during ATP hydrolysis by acto-G680V subfragment 1 is an acto-subfragment 1 complex carrying ADP and P(i), which scatters light but does not quench the pyrene fluorescence and so has a different conformation from the rigor complex.  相似文献   

5.
Molecular mechanics of mouse cardiac myosin isoforms   总被引:2,自引:0,他引:2  
Two myosin isoforms are expressed in myocardium, alphaalpha-homodimers (V(1)) and betabeta-homodimers (V(3)). V(1) exhibits higher velocities and myofibrillar ATPase activities compared with V(3). We also observed this for cardiac myosin from normal (V(1)) and propylthiouracil-treated (V(3)) mice. Actin velocity in a motility assay (V(actin)) over V(1) myosin was twice that of V(3) as was the myofibrillar ATPase. Myosin's average force (F(avg)) was similar for V(1) and V(3). Comparing V(actin) and F(avg) across species for both V(1) and V(3), our laboratory showed previously (VanBuren P, Harris DE, Alpert NR, and Warshaw DM. Circ Res 77: 439-444, 1995) that mouse V(1) has greater V(actin) and F(avg) compared with rabbit V(1). Mouse V(3) V(actin) was twice that of rabbit V(actin). To understand myosin's molecular structure and function, we compared alpha- and beta-cardiac myosin sequences from rodents and rabbits. The rabbit alpha- and beta-cardiac myosin differed by eight and four amino acids, respectively, compared with rodents. These residues are localized to both the motor domain and the rod. These differences in sequence and mechanical performance may be an evolutionary attempt to match a myosin's mechanical behavior to the heart's power requirements.  相似文献   

6.
The motility of demembranated bull sperm was found to be governed by the concentrations of cyclic adenosine 3', 5'-monophosphate (cAMP) and Ca2+ at low pH (6.6-7.1), and was less sensitive to these variables at higher pH (7.4-7.8). Although motility was generally found to increase with increasing pH in the range from 6.6 to 7.8, the addition of exogenous cAMP markedly and selectively improved the motility at the lower end of the range (pH 6.6-7.1). In the presence of 10 microM cAMP, low Ca2+ (8.0 X 10(-8) M), and a high concentration of Mg-adenosine 5'-triphosphate (ATP, 8 mM), demembranated sperm at pH 6.8 and 7.1 exhibited swimming similar to that of live ejaculated sperm. At a free Ca2+ concentration of 4.4 X 10(-5) M, the motility was rapidly inhibited at pH 6.8-7.1, whereas at pH 7.4-7.8, the activity was not greatly affected. Since calcium is known to antagonize the cAMP pathway by activating Ca2+-dependent phosphodiesterase and Ca2+-dependent phosphatase, this further supports the idea that cAMP-dependent activation is crucial for motility at low pH. Our results demonstrate that the flagellar axoneme can function normally at relatively acidic pH, and produce vigorous swimming at high levels of ATP. The ATP content of live sperm was measured and found to be high enough (approximately 8 mM) to support the vigorous motility seen at pH 6.6-7.1 in the models.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Joel PB  Sweeney HL  Trybus KM 《Biochemistry》2003,42(30):9160-9166
Much interest has centered on two surface loops in the motor domain to explain the differences in enzymatic and mechanical properties of myosin isoforms. We showed that two invariant lysines at the C-terminal end of loop 2, which is part of the actin-binding interface, are required to obtain actin activation [Joel et al. (2001) J. Biol. Chem. 276, 2998-3003]. Here we investigate the effects of increasing positive charge in the variable portion of loop 2 of smooth muscle heavy meromyosin (smHMM). Increasing the net positive charge by +4 increased the affinity for actin in the presence and absence of ATP. The K(m) for actin-activated ATPase activity decreased 15-fold, but V(max) was unchanged, showing that "weak binding" of myosin for actin can be significantly strengthened without increasing the rate-limiting step for V(max). The mutant HMM had slower rates of in vitro motility and ADP release compared to WT HMM. ADP release and motility, which were both salt-dependent, correlated linearly with each other. Loop 2 thus plays a major role in setting the affinity for actin but also affects ADP release and motility. Because the actin- and nucleotide-binding regions communicate, mutations to one region can impact multiple facets of myosin's mechanical and enzymatic properties.  相似文献   

8.
The effect of Cr(NH3)2ATP, a virtually inert, inner sphere metal-ligand complex, on the kinetics of purified yeast hexokinase PII has been studied at pH 6.5 and pH 7.5. At pH 6.5, where the normal assays exhibit a slow burst-type transient, low concentrations of Cr(NH3)2ATP were found to activate both phii, the initial velocity, and phiII, the steady state velocity. At higher concentrations, Cr(NH3)2ATP was found to be a competitive inhibitor versus MgATP for both phii and phiII. The apparent Ki values for both velocities were the same. The inhibition by Cr(NH3)2ATP at pH 6.5 was found to be a slow process with half-times similar to those found for the normal burst-type transient at this pH value. At pH 7.5, where normal assays exhibit linear progress curves, Cr(NH3)2ATP behaved similarly to that observed before at pH 7 (Danenberg, D. D., and Cleland, W. W. (1975) Biochemistry 14, 28-39), i.e. it was a competitive inhibitor versus MgATP and it caused a slowing of the reaction rate over the first several minutes. The apparent Ki for the initial velocity was 8-fold higher than the apparent Ki for the steady state velocity, suggesting tighter binding of Cr(NH3)2ATP with time. Preincubation experiments indicated that the normal pH 6.5 burst-type transient could be eliminated by appropriate preincubation with Cr(NH3)2ATP and a sugar. In agreement with Danenberg and Cleland (1975), similar preincubations have been shown to produce linear assays at pH 7.5 in the presence of Cr(NH3)2ATP. Similar results were seen with MgITP as the nucleotide substrate, where a burst-type transient is not seen at either pH value under normal assay conditions. At pH 7.5, a slow decrease in the reaction rate is seen over the first several minutes in the presence of Cr(NH3)2ATP. The apparent Ki for phii was 7-fold higher than the apparent Ki value for phiII, again suggesting a tighter binding of Cr(NH3)2ATP with time. A similar observation was made at pH 6.5, but the Ki values for phii and phiII were the same, suggesting no tightening of the binding of Cr(NH3)2ATP with time at this pH value. These results suggested that both slow processes reflect the same basic molecular change, but the consequences are different at the two pH values, presumably because of the difference in the charge of the enzyme. The Cr(NH3)2ATP kinetics at pH 6.5 have been interpreted in terms of a modification of the slow transition mechanism for hexokinase (Shill, J. P., and Neet, K. E. (1975) J. Biol. Chem. 250, 2259-2268). It is postulated that glucose and Cr(NH3)2ATP induce the same slow conformational change at pH 6.5 as that induced by glucose and MgATP, which gives rise to the normal burst-type transient. This suggests that Cr(NH3)2ATP may be a useful tool for physical studies to determine the cause of the slow transition of yeast hexokinase. Activation by low concentrations of Cr(NH3)2ATP was interpreted as binding of the nucleotide to an activator site on the enzyme, causing a shift in the distribution of enzyme towards the more active form.  相似文献   

9.
Point mutations in cardiac myosin, the heart's molecular motor, produce distinct clinical phenotypes: hypertrophic (HCM) and dilated (DCM) cardiomyopathy. Do mutations alter myosin's molecular mechanics in a manner that is predictive of the clinical outcome? We have directly characterized the maximal force-generating capacity (F(max)) of two HCM (R403Q, R453C) and two DCM (S532P, F764L) mutant myosins isolated from homozygous mouse models using a novel load-clamped laser trap assay. F(max) was 50% (R403Q) and 80% (R453C) greater for the HCM mutants compared with the wild type, whereas F(max) was severely depressed for one of the DCM mutants (65% S532P). Although F(max) was normal for the F764L DCM mutant, its actin-activated ATPase activity and actin filament velocity (V(actin)) in a motility assay were significantly reduced (Schmitt JP, Debold EP, Ahmad F, Armstrong A, Frederico A, Conner DA, Mende U, Lohse MJ, Warshaw D, Seidman CE, Seidman JG. Proc Natl Acad Sci USA 103: 14525-14530, 2006.). These F(max) data combined with previous V(actin) measurements suggest that HCM and DCM result from alterations to one or more of myosin's fundamental mechanical properties, with HCM-causing mutations leading to enhanced but DCM-causing mutations leading to depressed function. These mutation-specific changes in mechanical properties must initiate distinct signaling cascades that ultimately lead to the disparate phenotypic responses observed in HCM and DCM.  相似文献   

10.
To better understand how skeletal muscle myosin molecules move actin filaments, we determine the motion-generating biochemistry of a single myosin molecule and study how it scales with the motion-generating biochemistry of an ensemble of myosin molecules. First, by measuring the effects of various ligands (ATP, ADP, and P(i)) on event lifetimes, tau(on), in a laser trap, we determine the biochemical kinetics underlying the stepwise movement of an actin filament generated by a single myosin molecule. Next, by measuring the effects of these same ligands on actin velocities, V, in an in vitro motility assay, we determine the biochemistry underlying the continuous movement of an actin filament generated by an ensemble of myosin molecules. The observed effects of P(i) on single molecule mechanochemistry indicate that motion generation by a single myosin molecule is closely associated with actin-induced P(i) dissociation. We obtain additional evidence for this relationship by measuring changes in single molecule mechanochemistry caused by a smooth muscle HMM mutation that results in a reduced P(i)-release rate. In contrast, we observe that motion generation by an ensemble of myosin molecules is limited by ATP-induced actin dissociation (i.e., V varies as 1/tau(on)) at low [ATP], but deviates from this relationship at high [ATP]. The single-molecule data uniquely provide a direct measure of the fundamental mechanochemistry of the actomyosin ATPase reaction under a minimal load and serve as a clear basis for a model of ensemble motility in which actin-attached myosin molecules impose a load.  相似文献   

11.
Schwarzl SM  Smith JC  Fischer S 《Biochemistry》2006,45(18):5830-5847
The molecular motor myosin converts chemical energy from ATP hydrolysis into mechanical work, thus driving a variety of essential motility processes. Although myosin function has been studied extensively, the catalytic mechanism of ATP hydrolysis and its chemomechanical coupling to the motor cycle are not completely understood. Here, the catalysis mechanism in myosin II is examined using quantum mechanical/molecular mechanical reaction path calculations. The resulting reaction pathways, found in the catalytically competent closed/closed conformation of the Switch-1/Switch-2 loops of myosin, are all associative with a pentavalent bipyramidal oxyphosphorane transition state but can vary in the activation mechanism of the attacking water molecule and in the way the hydrogens are transferred between the heavy atoms. The coordination bond between the Mg2+ metal cofactor and Ser237 in the Switch-1 loop is broken in the product state, thereby facilitating the opening of the Switch-1 loop after hydrolysis is completed, which is required for subsequent strong rebinding to actin. This reveals a key element of the chemomechanical coupling that underlies the motor cycle, namely, the modulation of actin unbinding or binding in response to the ATP or ADP x P(i) state of nucleotide-bound myosin.  相似文献   

12.
Effects of MgATP, MgADP, and Pi on actin movement by smooth muscle myosin.   总被引:4,自引:0,他引:4  
To test the idea that the in vitro motility assay is a simplified model system for muscle contraction, the MgATP-dependent movement of actin filaments by thiophosphorylated smooth muscle myosin was characterized in the presence of the products MgADP and inorganic phosphate. The dependence of actin filament velocity on MgATP concentration was hyperbolic with a maximum velocity of 0.6 micron/s and an apparent Km = 40 microM (30 degrees C). MgADP competitively inhibited actin movement by MgATP with a Ki = 0.25 mM. Inorganic phosphate did not affect actin filament velocity in the presence of 1 mM MgATP, but competitively inhibited movement in the presence of 50 microM MgATP with a Ki = 9.5 mM. The effects of ADP and Pi on velocity agree with fiber mechanical studies, confirming that the motility assay is an excellent system to investigate the molecular mechanisms of force generation and shortening in smooth muscle. The rate at which rigor cross-bridges can be recruited to move actin filaments was observed by initiating cross-bridge cycling from rigor by flash photolysis of caged MgATP. Following the flash, which results in a rapid increase in MgATP concentration, actin filaments experienced a MgATP-dependent delay prior to achieving steady state velocity. The delay at low MgATP concentrations was interpreted as evidence that motion generating cross-bridges are slowed by a load due to a transiently high percentage of rigor cross-bridges immediately following MgATP release.  相似文献   

13.
Actin filament velocities in an in vitro motility assay system were measured both in heavy water (deuterium oxide, D(2)O) and water (H(2)O) to examine the effect of D(2)O on the actomyosin interaction. The dependence of the sliding velocity on pD of the D(2)O assay solution showed a broad pD optimum of around pD 8.5 which resembled the broad pH optimum (pH 8.5) of the H(2)O assay solution, but the maximum velocity (4.1+/-0.5 microm/s, n=11) at pD 8.5 in D(2)O was about 60% of that (7.1+/-1.1 microm/s, n=11) at pH 8.5 in H(2)O. The K(m) values of 95 and 80 microM and V(max) values of 3.2 and 5.1 microm/s for the D(2)O and H(2)O assay were obtained by fitting the ATP concentration dependence of the velocity (at pD and pH 7.5) to the Michaelis-Menten equation. The K(m) value of actin-activated Mg-ATPase activity of myosin subfragment 1 (S1) was decreased from 50 microM [actin] in H(2)O to 33 microM [actin] in D(2)O without any significant changes in V(max) (9.4 s(-1) in D(2)O and 9.3 s(-1) in H(2)O). The rate constants of ADP release from the acto-S1-ADP complex measured by the stopped flow method were 361+/-26 s(-1) (n=27) in D(2)O and 512+/-39 s(-1) (n=27) in H(2)O at 6 degrees C. These results suggest that the decrease in the in vitro actin-myosin sliding velocity in D(2)O results from a slowing of the release of ADP from the actomyosin-ADP complex and the increase in the affinity of actin for myosin in the presence of ATP in D(2)O.  相似文献   

14.
The effects of chemical modifications of myosin's reactive cysteines on actomyosin adenosine triphosphatase (ATPase) activities and sliding velocities in the in vitro motility assays were examined in this work. The three types of modifications studied were 4-[N-[(iodoacetoxy)ethyl]-N-methylamino]-7-nitrobenz-2-oxa-1,3- diazole labeling of SH2 (based on Ajtai and Burghart. 1989. Biochemistry. 28:2204-2210.), phenylmaleimide labeling of SH1, and phenylmaleimide labeling of myosin in myofibrils under rigor conditions. Each type of modified myosin inhibited the sliding of actin in motility assays. The sliding velocities of actin over copolymers of modified and unmodified myosins in the motility assay were slowest with rigor-modified myosin and most rapid with SH2-labeled myosin. The actin-activated ATPase activities of similarly copolymerized myosins were lowest with SH2-labeled myosin and highest with rigor-modified myosin. The actin-activated ATPase activities of myosin subfragment-1 obtained from these modified myosins decreased in the same linear manner with the fraction of modified heads. These results are interpreted using a model in which the sliding of actin filaments over myosin filaments decreases the probability of myosin activation by actin. The sliding velocity of actin over monomeric rigor-modified myosin exceeded that over the filamentous form, which suggests for this myosin that filament structure is important for the inhibition of actin sliding in motility assays. The fact that all cysteine modifications examined inhibited the actomyosin ATPase activities and sliding velocities of actin over myosin poses questions concerning the information about the activated crossbridge obtained from probes attached to SH1 or SH2 on myosin.  相似文献   

15.
In contracting muscle, individual myosin molecules function as part of a large ensemble, hydrolyzing ATP to power the relative sliding of actin filaments. The technological advances that have enabled direct observation and manipulation of single molecules, including recent experiments that have explored myosin's force-dependent properties, provide detailed insight into the kinetics of myosin's mechanochemical interaction with actin. However, it has been difficult to reconcile these single-molecule observations with the behavior of myosin in an ensemble. Here, using a combination of simulations and theory, we show that the kinetic mechanism derived from single-molecule experiments describes ensemble behavior; but the connection between single molecule and ensemble is complex. In particular, even in the absence of external force, internal forces generated between myosin molecules in a large ensemble accelerate ADP release and increase how far actin moves during a single myosin attachment. These myosin-induced changes in strong binding lifetime and attachment distance cause measurable properties, such as actin speed in the motility assay, to vary depending on the number of myosin molecules interacting with an actin filament. This ensemble-size effect challenges the simple detachment limited model of motility, because even when motility speed is limited by ADP release, increasing attachment rate can increase motility speed.  相似文献   

16.
Myosin VI is the only pointed end-directed myosin identified and is likely regulated by heavy chain phosphorylation (HCP) at the actin-binding site in vivo. We undertook a detailed kinetic analysis of the actomyosin VI ATPase cycle to determine whether there are unique adaptations to support reverse directionality and to determine the molecular basis of regulation by HCP. ADP release is the rate-limiting step in the cycle. ATP binds slowly and with low affinity. At physiological nucleotide concentrations, myosin VI is strongly bound to actin and populates the nucleotide-free (rigor) and ADP-bound states. Therefore, myosin VI is a high duty ratio motor adapted for maintaining tension and has potential to be processive. A mutant mimicking HCP increases the rate of P(i) release, which lowers the K(ATPase) but does not affect ADP release. These measurements are the first to directly measure the steps regulated by HCP for any myosin. Measurements with double-headed myosin VI demonstrate that the heads are not independent, and the native dimer hydrolyzes multiple ATPs per diffusional encounter with an actin filament. We propose an alternating site model for the stepping and processivity of two-headed high duty ratio myosins.  相似文献   

17.
The human prostacyclin receptor (hIP) is a seven transmembrane-spanning G-protein-coupled receptor that plays an important role in vascular homeostasis. Recent genetic analyses (SNP database, NCBI) have revealed the first two polymorphisms within the coding sequence, V25M and R212H. Here we present structure-function characterizations of these polymorphisms at physiological pH (7.4) and at an acidic pH (6.8) that would be encountered during stress such as renal, respiratory, or heart failure. Through a series of competition binding and G-protein activation assays (measured by cAMP production), we determined that the V25M polymorph exhibited agonist binding and G-protein activation similar to wild-type receptor at normal pH (7.4). However, the R212H variant demonstrated a significant decrease in binding affinity at lower pH (R212H at pH 7.4, K(i) = 2.2 +/- 1.2 nm; pH 6.8 K(i) = 45.6 +/- 12.0 nm). The R212H polymorph also exhibited abnormal activation at both pH 7.4 and pH 6.8 (pH 7.4, R212H EC(50) = 2.8 +/- 0.5 nm versus wild-type hIP EC(50) = 0.5 +/- 0.1 nm; pH 6.8, R212H EC(50) = 3.2 +/- 1.6 nm versus wild-type hIP EC(50) = 0.5 +/- 0.2 nm). Polymorphisms of the human prostacyclin receptor potentially may be important predictors of disease progress during biological stressors such as acidosis in which urgent correction of bodily pH may be required to restore normal hemostasis and vasodilation. This study provides the mechanistic basis for further research into genetic risk factors and pharmacogenetics of cardiovascular disease associated with hIP.  相似文献   

18.
V(IV) and V(III) reduce molecular oxygen with increasing rates as the pH is raised from 6.0 to 7.4. Under all conditions tested, V(IV) is the more efficient reductant. EDTA and ATP generally inhibit the reduction of oxygen by V(III) and V(IV). In contrast, desferrioxamine accelerates the reduction of oxygen by V(IV) but with decreasing effectiveness at pH 7.4 compared to pH 6.0, while desferrioxamine accelerates the reduction of oxygen by V(III) only at pH 6.0. Histidine enhances the reduction of oxygen by V(IV) at pH 7.0 and 7.4. The observed rates of oxygen reduction by V(III) and V(IV) imply that the intracellular distribution of vanadium among its redox states reflects not an equilibrium but a steady state.  相似文献   

19.
Myosin interacts with actin during its enzymatic cycle, and actin stimulates myosin's ATPase activity. There are extensive interaction surfaces on both actin and myosin. Several surface loops of myosin play different roles in actomyosin interaction. However, the functional role of loop 4 in actin binding is still ambiguous. We explored the role of loop 4 by either mutating its conserved acidic group, Glu-365, to Gln (E365Q), or by replacing the entire loop with three glycines (DeltaAL) in a Dictyostelium discoideum myosin II motor domain (MD) containing a single tryptophan residue. This native tryptophan (Trp-501) is located in the relay loop and is sensitive to nucleotide binding and lever-arm movement. Fluorescence and fast kinetic measurements showed that the mutations in loop 4 do not alter the enzymatic steps of the ATPase cycle in the absence of actin. By contrast, actin binding was significantly weakened in the absence and presence of ADP and ATP in both mutants. Because the strength of actin-myosin interaction increases in the order of rigor, ADP, and ATP complex, we conclude that loop 4 is a functional actin-binding region that stabilizes actomyosin complex, particularly in weak actin-binding states.  相似文献   

20.
S P Chock  P B Chock  E Eisenberg 《Biochemistry》1976,15(15):3244-3253
A single cycle of adenosine 5'-triphosphate (ATP) hydrolysis by a complex of actin and myosin subfragment one (acto-S-1) was studied in a stopped-flow apparatus at low temperature and low ionic strength, using light scattering to monitor the interaction of S-1 with actin and fluorescence to detect the formation of fluorescent intermediates. Our results show that the addition of a stoichiometric concentration of ATP to the acto-S-1 causes a cycle consisting of first, a rapid dissociation of the S-1 from actin by ATP; second, a slower fluorescence change in the S-1 that may be related to the initial phosphate burst; and third, a much slower rate limiting recombination of the S-1 with actin. This latter step equals the acto-S-1 steady-state adenosine 5'-triphosphatase (ATPase) rate at both low and high actin concentrations, and like the steady-state ATPase levels off at a V max of 0.9s-1 at high actin concentration. Therefore, the release of adenosine 5'-diphosphate and inorganic phosphate is not the rate-limiting step in the acto-S-1 ATPase. Rather, a slow first-order step corresponding to the previously postulated transition from the refractory to the nonrefractory state precedes the rebinding of the S-1 to the actin during each cycle of ATP hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号