共查询到20条相似文献,搜索用时 15 毫秒
1.
Adherens junction (AJ) between dopaminergic (DA) progenitors maintains the structure of ventricular zone and polarity of radial glia cells in the ventral midbrain (vMB) during embryonic development. However, it is unclear how loss of N‐cadherin might influence the integrity of the AJ and the process of DA neurogenesis. Here, we used conditional gene targeting approaches to perform the region‐specific removal of N‐cadherin in the neurogenic niche of DA neurons in the vMB. Removal of N‐cadherin in the vMB using Shh‐Cre disrupts the AJs of DA progenitors and radial glia processes in the vMB. Surprisingly, loss of N‐cadherin in the vMB leads to a significant expansion of DA progenitors, including those expressing Sox2, Ngn2, and Otx2. Cell cycle analyses reveal that the cell cycle exit in the progenitor cells is decreased in the mutants from E11.5 to E12.5. In addition, the efficiency of DA progenitors in differentiating into DA neurons is decreased from E10.5 to E12.5, leading to a marked reduction in the number of DA neurons at E11.5, E12.5, and E17.5. Loss of N‐cadherin leads to the diffuse distribution of β‐catenin proteins, which are a critical component of AJ and Wnt signaling, from the AJ throughout the entire cytoplasm in neuroepithelial cells, suggesting that canonical Wnt signaling might be activated in the DA progenitors in vMB. Taken together, these results support the notion that N‐cadherin regulates the proliferation of DA progenitors and the differentiation of DA neurons through canonical Wnt‐β‐catenin signaling in the vMB. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 73: 518–529, 2013 相似文献
2.
Andersson ER Prakash N Cajanek L Minina E Bryja V Bryjova L Yamaguchi TP Hall AC Wurst W Arenas E 《PloS one》2008,3(10):e3517
Wnt5a is a morphogen that activates the Wnt/planar cell polarity (PCP) pathway and serves multiple functions during development. PCP signaling controls the orientation of cells within an epithelial plane as well as convergent extension (CE) movements. Wnt5a was previously reported to promote differentiation of A9-10 dopaminergic (DA) precursors in vitro. However, the signaling mechanism in DA cells and the function of Wnt5a during midbrain development in vivo remains unclear. We hereby report that Wnt5a activated the GTPase Rac1 in DA cells and that Rac1 inhibitors blocked the Wnt5a-induced DA neuron differentiation of ventral midbrain (VM) precursor cultures, linking Wnt5a-induced differentiation with a known effector of Wnt/PCP signaling. In vivo, Wnt5a was expressed throughout the VM at embryonic day (E)9.5, and was restricted to the VM floor and basal plate by E11.5-E13.5. Analysis of Wnt5a-/- mice revealed a transient increase in progenitor proliferation at E11.5, and a precociously induced NR4A2+ (Nurr1) precursor pool at E12.5. The excess NR4A2+ precursors remained undifferentiated until E14.5, when a transient 25% increase in DA neurons was detected. Wnt5a-/- mice also displayed a defect in (mid)brain morphogenesis, including an impairment in midbrain elongation and a rounded ventricular cavity. Interestingly, these alterations affected mostly cells in the DA lineage. The ventral Sonic hedgehog-expressing domain was broadened and flattened, a typical CE phenotype, and the domains occupied by Ngn2+ DA progenitors, NR4A2+ DA precursors and TH+ DA neurons were rostrocaudally reduced and laterally expanded. In summary, we hereby describe a Wnt5a regulation of Wnt/PCP signaling in the DA lineage and provide evidence for multiple functions of Wnt5a in the VM in vivo, including the regulation of VM morphogenesis, DA progenitor cell division, and differentiation of NR4A2+ DA precursors. 相似文献
3.
4.
Delta-like 1 participates in the specification of ventral midbrain progenitor derived dopaminergic neurons 总被引:1,自引:0,他引:1
Bauer M Szulc J Meyer M Jensen CH Terki TA Meixner A Kinkl N Gasser T Aebischer P Ueffing M 《Journal of neurochemistry》2008,104(4):1101-1115
Delta-like 1 (Dlk1), a member of the Delta/Notch protein family, is expressed in the mouse ventral midbrain (VM) as early as embryonic day 11.5 (E11.5) followed by exclusive expression in tyrosine 3-monooxygenase (TH) positive neurons from E12.5 onwards. To further elucidate the yet unknown function of Dlk1 in VM neuron development, we investigated the effect of soluble Dlk1 protein as well as the intrinsic Dlk1 function in the course of VM progenitor expansion and dopaminergic (DA) neuron differentiation in vitro . Dlk1 treatment during expansion increased DA progenitor proliferation and the proportion of NR4A2+ neurons expressing TH after differentiation, whereas Dlk1 treatment during the course of DA precursor differentiation did not alter TH+ neuron counts. In contrast, silencing of endogenously expressed Dlk1 prior to DA precursor differentiation partially prevented the expression of DA neuron markers, which was not accompanied with alteration of overall or local proliferation. Due to the latter finding in combination with the absence of Dlk1 negative DA neurons in differentiated cultures, we suggest that Dlk1 expression might have a permissive effect on DA neuron differentiation in vitro . The study presented here is the first publication identifying Dlk1 effects on ventral midbrain-derived DA precursor differentiation. 相似文献
5.
Blakely BD Bye CR Fernando CV Horne MK Macheda ML Stacker SA Arenas E Parish CL 《PloS one》2011,6(3):e18373
During development, precise temporal and spatial gradients are responsible for guiding axons to their appropriate targets. Within the developing ventral midbrain (VM) the cues that guide dopaminergic (DA) axons to their forebrain targets remain to be fully elucidated. Wnts are morphogens that have been identified as axon guidance molecules. Several Wnts are expressed in the VM where they regulate the birth of DA neurons. Here, we describe that a precise temporo-spatial expression of Wnt5a accompanies the development of nigrostriatal projections by VM DA neurons. In mice at E11.5, Wnt5a is expressed in the VM where it was found to promote DA neurite and axonal growth in VM primary cultures. By E14.5, when DA axons are approaching their striatal target, Wnt5a causes DA neurite retraction in primary cultures. Co-culture of VM explants with Wnt5a-overexpressing cell aggregates revealed that Wnt5a is capable of repelling DA neurites. Antagonism experiments revealed that the effects of Wnt5a are mediated by the Frizzled receptors and by the small GTPase, Rac1 (a component of the non-canonical Wnt planar cell polarity pathway). Moreover, the effects were specific as they could be blocked by Wnt5a antibody, sFRPs and RYK-Fc. The importance of Wnt5a in DA axon morphogenesis was further verified in Wnt5a-/- mice, where fasciculation of the medial forebrain bundle (MFB) as well as the density of DA neurites in the MFB and striatal terminals were disrupted. Thus, our results identify a novel role of Wnt5a in DA axon growth and guidance. 相似文献
6.
7.
Neurogenin 2 is required for the development of ventral midbrain dopaminergic neurons 总被引:9,自引:0,他引:9
Kele J Simplicio N Ferri AL Mira H Guillemot F Arenas E Ang SL 《Development (Cambridge, England)》2006,133(3):495-505
Proneural genes are crucial regulators of neurogenesis and subtype specification in many areas of the nervous system; however, their function in dopaminergic neuron development is unknown. We report that proneural genes have an intricate pattern of expression in the ventricular zone of the ventral midbrain, where mesencephalic dopaminergic neurons are generated. Neurogenin 2 (Ngn2) and Mash1 are expressed in the ventral midline, while Ngn1, Ngn2 and Mash1 are co-localized more laterally in the ventricular zone. Ngn2 is also expressed in an intermediate zone immediately adjacent to the ventricular zone at the ventral midline. To examine the function of these genes, we analyzed mutant mice in which one or two of these genes were deleted (Ngn1, Ngn2 and Mash1) or substituted (Mash1 in the Ngn2 locus). Our results demonstrate that Ngn2 is required for the differentiation of Sox2(+) ventricular zone progenitors into Nurr1(+) postmitotic dopaminergic neuron precursors in the intermediate zone, and that it is also likely to be required for their subsequent differentiation into tyrosine hydroxylase-positive dopaminergic neurons in the marginal zone. Although Mash1 normally has no detectable function in dopaminergic neuron development, it could partially rescue the generation of dopaminergic neuron precursors in the absence of Ngn2. These results demonstrate that Ngn2 is uniquely required for the development of midbrain dopaminergic neurons. 相似文献
8.
Lewis SL Khoo PL De Young RA Steiner K Wilcock C Mukhopadhyay M Westphal H Jamieson RV Robb L Tam PP 《Development (Cambridge, England)》2008,135(10):1791-1801
Loss of Dkk1 results in ectopic WNT/beta-catenin signalling activity in the anterior germ layer tissues and impairs cell movement in the endoderm of the mouse gastrula. The juxtaposition of the expression domains of Dkk1 and Wnt3 is suggestive of an antagonist-agonist interaction. The downregulation of Dkk1 when Wnt3 activity is reduced reveals a feedback mechanism for regulating WNT signalling. Compound Dkk1;Wnt3 heterozygous mutant embryos display head truncation and trunk malformation, which are not found in either Dkk1(+/-) or Wnt3(+/-) embryos. Reducing the dose of Wnt3 gene in Dkk1(-/-) embryos partially rescues the truncated head phenotype. These findings highlight that head development is sensitive to the level of WNT3 signalling and that DKK1 is the key antagonist that modulates WNT3 activity during anterior morphogenesis. 相似文献
9.
Lewis SL Khoo PL Andrea De Young R Bildsoe H Wakamiya M Behringer RR Mukhopadhyay M Westphal H Tam PP 《Mechanisms of development》2007,124(2):157-165
Mouse embryos lacking Gsc and Dkk1 function display severe deficiencies in craniofacial structures which are not found in either Dkk1 homozygous null or Gsc homozygous null mutant embryos. Loss of Gsc has a dosage-related effect on the severity of head truncation phenotype in Dkk1 heterozygous embryos. The synergistic effect of these mutations in enhancing head truncation provides direct evidence of a genetic interaction between Gsc and Dkk1, which display overlapping expression in the prechordal mesoderm. In the absence of Gsc activity, the expression of Dkk1, WNT genes and a transgenic reporter for WNT signalling are altered. Our results show that Gsc and Dkk1 functions are non-redundant in the anterior mesendoderm for normal anterior development and Gsc may influence Wnt signalling as a negative regulator. 相似文献
10.
Schulte G Bryja V Rawal N Castelo-Branco G Sousa KM Arenas E 《Journal of neurochemistry》2005,92(6):1550-1553
The Wnt family of lipoproteins regulates several aspects of the development of the nervous system. Recently, we reported that Wnt-3a enhances the proliferation of midbrain dopaminergic precursors and that Wnt-5a promotes their differentiation into dopaminergic neurones. Here we report the purification of hemagglutinin-tagged Wnt-5a using a three-step purification method similar to that previously described for Wnt-3a. Haemagglutinin-tagged Wnt-5a was biologically active and induced the differentiation of immature primary midbrain precursors into tyrosine hydroxylase-positive dopaminergic neurones. Using a substantia nigra-derived dopaminergic cell line (SN4741), we found that Wnt-5a, unlike Wnt-3a, did not promote beta-catenin phosphorylation or stabilization. However, both Wnt-5a and Wnt-3a activated dishevelled, as assessed by a phosphorylation-dependent mobility shift. Moreover, the activity of Wnt-5a on dishevelled was blocked by pre-treatment with acyl protein thioesterase-1, indicating that palmitoylation of Wnt-5a is necessary for its function. Thus, our results suggest that Wnt-3a and Wnt-5a, respectively, activate canonical and non-canonical Wnt signalling pathways in ventral midbrain dopaminergic cells. Furthermore, we identify dishevelled as a key player in transducing both Wnt canonical and non-canonical signals in dopaminergic cells. 相似文献
11.
Thomas U Greiner Gokul Kesavan Anders Ståhlberg Henrik Semb 《BMC developmental biology》2009,9(1):2-13
Background
Pancreatic islets of Langerhans originate from endocrine progenitors within the pancreatic ductal epithelium. Concomitant with differentiation of these progenitors into hormone-producing cells such cells delaminate, aggregate and migrate away from the ductal epithelium. The cellular and molecular mechanisms regulating islet cell delamination and cell migration are poorly understood. Extensive biochemical and cell biological studies using cultured cells demonstrated that Rac1, a member of the Rho family of small GTPases, acts as a key regulator of cell migration. 相似文献12.
Dopaminergic neurons from the substantia nigra and the ventral tegmental area of the midbrain project to the caudate/putamen and nucleus accumbens, respectively, establishing the mesostriatal and the mesolimbic pathways. However, the mechanisms underlying the development of these pathways are not well understood. In the current study, the EphA5 receptor and its corresponding ligand, ephrin‐A5, were shown to regulate dopaminergic axon outgrowth and influence the formation of the midbrain dopaminergic pathways. Using a strain of mutant mice in which the EphA5 cytoplasmic domain was replaced with β‐galactosidase, EphA5 protein expression was detected in both the ventral tegmental area and the substantia nigra of the midbrain. Ephrin‐A5 was found in both the dorsolateral and the ventromedial regions of the striatum, suggesting a role in mediating dopaminergic axon‐target interactions. In the presence of ephrin‐A5, dopaminergic neurons extended longer neurites in in vitro coculture assays. Furthermore, in mice lacking ephrin‐A5, retrograde tracing studies revealed that fewer neurons sent axons to the striatum. These observations indicate that the interactions between ephrin‐A ligands and EphA receptors promote growth and targeting of the midbrain dopaminergic axons to the striatum. © 2008 Wiley Periodicals, Inc. Develop Neurobiol, 2009 相似文献
13.
Carla Perrone-Capano Umberto di Porzio 《BioEssays : news and reviews in molecular, cellular and developmental biology》1996,18(10):817-824
In the mammalian brain dopamine systems play a central role in the control of movement, hormone release, emotional balance and reward. Alteration of dopaminergic neurotransmission is involved in Parkinson's disease and other movement disorders, as well as in some psychotic syndromes. This review summarises recent findings, which shed some light on signals and cellular interactions involved in the specification and maturation of the dopaminergic function during neurogenesis. In particular we will focus on three major issues: (1) the differentiation of dopaminergic neurones triggered by direct contact with the midbrain floor plate cells through the action of sonic hedgehog; (2) the neurotrophic factors acting on dopaminergic neurones; and (3) the role of target striatal cells on the survival and the axonal growth of developing or grafted dopaminergic neurones. 相似文献
14.
The mouse is an excellent model organism to study mammalian brain development due to the abundance of molecular and genetic data. However, the developing mouse brain is not suitable for easy manipulation and imaging in vivo since the mouse embryo is inaccessible and opaque. Organotypic slice cultures of embryonic brains are therefore widely used to study murine brain development in vitro. Ex-vivo manipulation or the use of transgenic mice allows the modification of gene expression so that subpopulations of neuronal or glial cells can be labeled with fluorescent proteins. The behavior of labeled cells can then be observed using time-lapse imaging. Time-lapse imaging has been particularly successful for studying cell behaviors that underlie the development of the cerebral cortex at late embryonic stages (1-2). Embryonic organotypic slice culture systems in brain regions outside of the forebrain are less well established. Therefore, the wealth of time-lapse imaging data describing neuronal cell migration is restricted to the forebrain (3,4). It is still not known, whether the principles discovered for the dorsal brain hold true for ventral brain areas. In the ventral brain, neurons are organized in neuronal clusters rather than layers and they often have to undergo complicated migratory trajectories to reach their final position. The ventral midbrain is not only a good model system for ventral brain development, but also contains neuronal populations such as dopaminergic neurons that are relevant in disease processes. While the function and degeneration of dopaminergic neurons has been investigated in great detail in the adult and ageing brain, little is known about the behavior of these neurons during their differentiation and migration phase (5). We describe here the generation of slice cultures from the embryonic day (E) 12.5 mouse ventral midbrain. These slice cultures are potentially suitable for monitoring dopaminergic neuron development over several days in vitro. We highlight the critical steps in generating brain slices at these early stages of embryonic development and discuss the conditions necessary for maintaining normal development of dopaminergic neurons in vitro. We also present results from time lapse imaging experiments. In these experiments, ventral midbrain precursors (including dopaminergic precursors) and their descendants were labeled in a mosaic manner using a Cre/loxP based inducible fate mapping system (6). 相似文献
15.
Jinrong Yin Chaofeng Hao Gang Niu Wei Wang Guanghui Wang Ping Xiang Jin-Rong Xu Xue Zhang 《Environmental microbiology》2020,22(12):5373-5386
Ascospores are the primary inoculum in Fusarium graminearum, a causal agent of wheat head blight. In a previous study, FgPAL1 was found to be upregulated in the Fgama1 mutant and important for ascosporogenesis. However, the biological function of this well-conserved gene in filamentous ascomycetes is not clear. In this study, we characterized its functions in growth, differentiation and pathogenesis. The Fgpal1 mutant had severe growth defects and often displayed abnormal hyphal tips. It was defective in infectious growth in rachis tissues and spreading in wheat heads. The Fgpal1 mutant produced conidia with fewer septa and more nuclei per compartment than the wild type. In actively growing hyphal tips, FgPal1-GFP mainly localized to the subapical collar and septa. The FgPal1 and LifeAct partially co-localized at the subapical region in an interdependent manner. The Fgpal1 mutant was normal in meiosis with eight nuclei in developing asci but most asci were aborted. Taken together, our results showed that FgPal1 plays a role in maintaining polarized tip growth and coordination between nuclear division and cytokinesis, and it is also important for infectious growth and developments of ascospores by the free cell formation process. 相似文献
16.
Koichi Yoshida 《Biochemical and biophysical research communications》2009,389(3):506-511
The ubiquitin-proteasome system has been implicated in neuronal degeneration and regeneration. We demonstrated that overexpression of ZNRF1, which has been identified as a crucial molecule in nerve regeneration, causes morphological changes such as neurite-like elongation. Molecular dissections showed that both the RING finger domain and zinc finger domain are required for morphological changes. Furthermore, we identified β-tubulin type 2 (Tubb2) as a ZNRF1-binding protein by yeast two-hybrid screening. In vivo binding assay showed that ZNRF1 interacts with Tubb2 and immunofluorescent staining suggests that ZNRF1 is colocalized with Tubb2. These results suggest that ZNRF1 mediates regulation of neuritogenesis via interaction with tubulin. 相似文献
17.
18.
Similarly to development, the process of regeneration requires that cells accurately sense and respond to their external environment. Thus, intrinsic cues must be integrated with signals from the surrounding environment to ensure appropriate temporal and spatial regulation of tissue regeneration. Identifying the signaling pathways that control these events will not only provide insights into a fascinating biological phenomenon but may also yield new molecular targets for use in regenerative medicine. Among classical models to study regeneration, freshwater planarians represent an attractive system in which to investigate the signals that regulate cell proliferation and differentiation, as well as the proper patterning of the structures being regenerated. Recent studies in planarians have begun to define the role of conserved signaling pathways during regeneration. Here, we extend these analyses to the epidermal growth factor (EGF) receptor pathway. We report the characterization of three epidermal growth factor (EGF) receptors in the planarian Schmidtea mediterranea. Silencing of these genes by RNA interference (RNAi) yielded multiple defects in intact and regenerating planarians. Smed-egfr-1(RNAi) resulted in decreased differentiation of eye pigment cells, abnormal pharynx regeneration and maintenance, and the development of dorsal outgrowths. In contrast, Smed-egfr-3(RNAi) animals produced smaller blastemas associated with abnormal differentiation of certain cell types. Our results suggest important roles for the EGFR signaling in controlling cell proliferation, differentiation and morphogenesis during planarian regeneration and homeostasis. 相似文献
19.
20.
β-chemokines are secreted factors that regulate diverse functions in the adult brain, such as neuro-immune responses and neurotransmission, but their function in the developing brain is largely unknown. We recently found that the orphan nuclear receptor, Nurr1, up regulates CCL2 and CCL7 in neural stem cells, suggesting a possible function of β-chemokines in midbrain development. Here we report that two β-chemokines, CCL2 and CCL7, and two of their receptors, CCR1 and CCR2, are expressed and developmentally regulated in the ventral midbrain (VM). Moreover, we found that the expression of CCL7 was down regulated in the Nurr1 knockout mice, linking CCL7 to dopamine (DA) neuron development. When the function of CCL2 and CCL7 was examined, we found that they selectively enhanced the differentiation of Nurr1+ precursors into DA neurons, but not their survival or progenitor proliferation in primary precursor cultures. Moreover, both CCL2 and CCL7 promoted neuritogenesis in midbrain DA neuron cultures. Thus, our results show for the first time a function of β-chemokines in the developing brain and identify β-chemokines as novel class of pro-differentiation factors for midbrain DA neurons. These data also suggest that β-chemokines may become useful tools to enhance the differentiation of DA cell preparations for cell replacement therapy and drug discovery in Parkinson's disease (PD). 相似文献