首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single particle tracking is widely used to study protein movement with high spatiotemporal resolution both in vitro and in cells. Quantum dots, which are semiconductor nanoparticles, have recently been employed in single particle tracking because of their intense and stable fluorescence. Although single particles inside cells have been tracked in three spatial dimensions (X, Y, Z), measurement of the angular orientation of a molecule being tracked would significantly enhance our understanding of the molecule’s function. In this study, we synthesized highly polarized, rod-shaped quantum dots (Qrods) and developed a coating method that optimizes the Qrods for biological imaging. We describe a Qrod-based single particle tracking technique that blends optical nanometry with nanomaterial science to simultaneously measure the three-dimensional and angular movements of molecules. Using Qrods, we spatially tracked a membrane receptor in living cells in four dimensions with precision close to the single-digit range in nanometers and degrees.  相似文献   

2.
Single particle tracking is widely used to study protein movement with high spatiotemporal resolution both in vitro and in cells. Quantum dots, which are semiconductor nanoparticles, have recently been employed in single particle tracking because of their intense and stable fluorescence. Although single particles inside cells have been tracked in three spatial dimensions (X, Y, Z), measurement of the angular orientation of a molecule being tracked would significantly enhance our understanding of the molecule’s function. In this study, we synthesized highly polarized, rod-shaped quantum dots (Qrods) and developed a coating method that optimizes the Qrods for biological imaging. We describe a Qrod-based single particle tracking technique that blends optical nanometry with nanomaterial science to simultaneously measure the three-dimensional and angular movements of molecules. Using Qrods, we spatially tracked a membrane receptor in living cells in four dimensions with precision close to the single-digit range in nanometers and degrees.  相似文献   

3.
4.
Motor enzymes are remarkable molecular machines that use the energy derived from the hydrolysis of a nucleoside triphosphate to generate mechanical movement, achieved through different steps that constitute their kinetic cycle. These macromolecules, nowadays investigated with advanced experimental techniques to unveil their molecular mechanisms and the properties of their kinetic cycles, are implicated in many biological processes, ranging from biopolymerization (e.g., RNA polymerases and ribosomes) to intracellular transport (motor proteins such as kinesins or dyneins). Although the kinetics of individual motors is well studied on both theoretical and experimental grounds, the repercussions of their stepping cycle on the collective dynamics still remains unclear. Advances in this direction will improve our comprehension of transport process in the natural intracellular medium, where processive motor enzymes might operate in crowded conditions. In this work, we therefore extend contemporary statistical kinetic analysis to study collective transport phenomena of motors in terms of lattice gas models belonging to the exclusion process class. Via numerical simulations, we show how to interpret and use the randomness calculated from single particle trajectories in crowded conditions. Importantly, we also show that time fluctuations and non-Poissonian behavior are intrinsically related to spatial correlations and the emergence of large, but finite, clusters of comoving motors. The properties unveiled by our analysis have important biological implications on the collective transport characteristics of processive motor enzymes in crowded conditions.  相似文献   

5.
Motor enzymes are remarkable molecular machines that use the energy derived from the hydrolysis of a nucleoside triphosphate to generate mechanical movement, achieved through different steps that constitute their kinetic cycle. These macromolecules, nowadays investigated with advanced experimental techniques to unveil their molecular mechanisms and the properties of their kinetic cycles, are implicated in many biological processes, ranging from biopolymerization (e.g., RNA polymerases and ribosomes) to intracellular transport (motor proteins such as kinesins or dyneins). Although the kinetics of individual motors is well studied on both theoretical and experimental grounds, the repercussions of their stepping cycle on the collective dynamics still remains unclear. Advances in this direction will improve our comprehension of transport process in the natural intracellular medium, where processive motor enzymes might operate in crowded conditions. In this work, we therefore extend contemporary statistical kinetic analysis to study collective transport phenomena of motors in terms of lattice gas models belonging to the exclusion process class. Via numerical simulations, we show how to interpret and use the randomness calculated from single particle trajectories in crowded conditions. Importantly, we also show that time fluctuations and non-Poissonian behavior are intrinsically related to spatial correlations and the emergence of large, but finite, clusters of comoving motors. The properties unveiled by our analysis have important biological implications on the collective transport characteristics of processive motor enzymes in crowded conditions.  相似文献   

6.
Abstract

Analysis, storage, and transfer of molecular dynamic trajectories are becoming the bottleneck of computer simulations. In this paper we discuss different approaches for data mining and data processing of huge trajectory files generated from molecular dynamic simulations of nucleic acids.  相似文献   

7.
8.
Is it possible to extract tethering forces applied on chromatin from the statistics of a single locus trajectories imaged in vivo? Chromatin fragments interact with many partners such as the nuclear membrane, other chromosomes or nuclear bodies, but the resulting forces cannot be directly measured in vivo. However, they impact chromatin dynamics and should be reflected in particular in the motion of a single locus. We present here a method based on polymer models and statistics of single trajectories to extract the force characteristics and in particular when they are generated by the gradient of a quadratic potential well. Using numerical simulations of a Rouse polymer and live cell imaging of the MAT-locus located on the yeast Saccharomyces cerevisiae chromosome III, we recover the amplitude and the distance between the observed and the interacting monomer. To conclude, the confined trajectories we observed in vivo reflect local interaction on chromatin.  相似文献   

9.
Dear Editor, Embryogenesis is a critical developmental stage during the life cycle of flowering plants. During embryogenesis, the first round of asymmetric cell division in the zygote is followed by a series of cellular events, including cell division (symmetric or asymmetric) and directional cell expan- sion to generate the apical-basal axis, radial and lateral symmetry, and patterns of different cell fates for initiation of different organ primordia, which lay the foundation for post-embryonic development (Jurgens, 2001; Wendrich and Weijers, 2013).  相似文献   

10.
Diffusion is often an important rate-determining step in chemical reactions or biological processes and plays a role in a wide range of intracellular events. Viscosity is one of the key parameters affecting the diffusion of molecules and proteins, and changes in viscosity have been linked to disease and malfunction at the cellular level.1-3 While methods to measure the bulk viscosity are well developed, imaging microviscosity remains a challenge. Viscosity maps of microscopic objects, such as single cells, have until recently been hard to obtain. Mapping viscosity with fluorescence techniques is advantageous because, similar to other optical techniques, it is minimally invasive, non-destructive and can be applied to living cells and tissues.Fluorescent molecular rotors exhibit fluorescence lifetimes and quantum yields which are a function of the viscosity of their microenvironment.4,5 Intramolecular twisting or rotation leads to non-radiative decay from the excited state back to the ground state. A viscous environment slows this rotation or twisting, restricting access to this non-radiative decay pathway. This leads to an increase in the fluorescence quantum yield and the fluorescence lifetime. Fluorescence Lifetime Imaging (FLIM) of modified hydrophobic BODIPY dyes that act as fluorescent molecular rotors show that the fluorescence lifetime of these probes is a function of the microviscosity of their environment.6-8 A logarithmic plot of the fluorescence lifetime versus the solvent viscosity yields a straight line that obeys the Förster Hoffman equation.9 This plot also serves as a calibration graph to convert fluorescence lifetime into viscosity.Following incubation of living cells with the modified BODIPY fluorescent molecular rotor, a punctate dye distribution is observed in the fluorescence images. The viscosity value obtained in the puncta in live cells is around 100 times higher than that of water and of cellular cytoplasm.6,7 Time-resolved fluorescence anisotropy measurements yield rotational correlation times in agreement with these large microviscosity values. Mapping the fluorescence lifetime is independent of the fluorescence intensity, and thus allows the separation of probe concentration and viscosity effects. In summary, we have developed a practical and versatile approach to map the microviscosity in cells based on FLIM of fluorescent molecular rotors.  相似文献   

11.
分别采用两种不同绿色荧光蛋白(green fluorescent prote in,GFP)突变体作为荧光共振能量转移(fluo-rescence resonance energy transfer,FRET)对的供体和受体,并利用分子生物学技术将供体和受体分子分别与特定的生物分子融合,这种技术已经成为在单个活细胞中实时长时间检测蛋白质间的动态相互作用的主要技术。主要介绍了基于GFPs的FRET技术在单个活细胞中实时长时间研究生物分子动态行为的应用。  相似文献   

12.
The endomembrane system of a cell is a highly dynamic, ephemeral structure that is difficult to visualize. Reconstructions from sections of fixed material can provide high-resolution information on intercellular membrane architecture, but such techniques are fraught with artifacts and are of little help in understanding the dynamics of intracellular membrane traffic. Recently, the availability of fluorescent membrane probes and the development of techniques for optically sectioning intact specimens have allowed glimpses of membrane dynamics to be visualized in living tissue. In this review we discuss the potential of a new optical sectioning technique, multiphoton imaging, for visualizing membrane dynamics in living cells. Multiphoton microscopy offers an unparalleled ability to obtain images from deep within specimens while minimizing the effects of phototoxicity.  相似文献   

13.
Abstract

We report preliminary molecular dynamics simulations results for platinum atoms confined between two parallel graphite surfaces. The system shows phase transition characteristics corresponding to a second order transition. Significant structural changes are also observed in the range of temperature studied. We have also investigated the effects of two dfferent Pt-wall interaction potentials: the 9-3 form suggested by Crowell and the 10-4 form originally proposed by Steele. The results show that the two systems have rather different structural characteristics but similar thermodynamic behavior.  相似文献   

14.
A new imaging technique for the analysis of fluorescent pigments from a single cell is reported. It is based on confocal scanning laser microscopy coupled with spectrofluorometric methods. The setup allows simultaneous establishment of the relationships among pigment analysis in vivo, morphology, and three-dimensional localization inside thick intact microbial assemblages.  相似文献   

15.
Bacterial high-copy-number (hcn) plasmids provide an excellent model to study the underlying physical mechanisms of DNA segment segregation in an intracellular context. Using two-color fluorescent repressor-operator systems and a synthetic repressible replication origin, we tracked the motion and segregation of single hcn plasmid molecules in individual cells. The plasmid diffusion dynamics revealed between-plasmid temporal associations (clustering) as well as entropic and elastic recoiling forces in the confined intracellular spaces outside of nucleoids. These two effects could be effectively used in models to predict the heterogeneity of segregation. Additionally, the motile behaviors of hcn plasmids provide quantitative estimates of entropic exclusion strength and dynamic associations between DNA segments. Overall, this study utilizes a, to our knowledge, novel approach to predict the polymer dynamics of DNA segments in spatially confined, crowded cellular compartments as well as during bacterial chromosome segregation.  相似文献   

16.
To study the structural composition and dynamics of gap junctions in living cells, we tagged their subunit proteins, termed connexins, with the autofluorescent tracer green fluorescent protein (GFP) and its cyan (CFP) and yellow (YFP) color variants. Tagged connexins assembled normally and channels were functional. High-resolution fluorescence images of gap junction plaques assembled from CFP and YFP tagged connexins revealed that the mode of channel distribution is strictly dependent on the connexin isoforms. Co-distribution as well as segregation into well-separated domains was observed. Based on accompanying studies we propose that channel distribution is regulated by intrinsic, connexin isoform specific signals. High-resolution time-lapse images revealed that gap junctions, contrary to previous expectations, are dynamic assemblies of channels. Channels within clusters and clusters themselves are mobile and constantly undergo structural rearrangements. Movements are complex and allow channels to move, comparable to other plasma membrane proteins not anchored to cytoskeletal elements. Comprehensive analysis, however, demonstrated that gap junction channel movements are not driven by diffusion described to propel plasma membrane protein movement. Instead, recent studies suggest that movements of gap junction channels are indirect and predominantly propelled by plasma membrane lipid flow that results from metabolic endo- and exocytosis.  相似文献   

17.
To study the structural composition and dynamics of gap junctions in living cells, we tagged their subunit proteins, termed connexins, with the autofluorescent tracer green fluorescent protein (GFP) and its cyan (CFP) and yellow (YFP) color variants. Tagged connexins assembled normally and channels were functional. High-resolution fluorescence images of gap junction plaques assembled from CFP and YFP tagged connexins revealed that the mode of channel distribution is strictly dependent on the connexin isoforms. Co-distribution as well as segregation into well-separated domains was observed. Based on accompanying studies we propose that channel distribution is regulated by intrinsic, connexin isoform specific signals. High-resolution time-lapse images revealed that gap junctions, contrary to previous expectations, are dynamic assemblies of channels. Channels within clusters and clusters themselves are mobile and constantly undergo structural rearrangements. Movements are complex and allow channels to move, comparable to other plasma membrane proteins not anchored to cytoskeletal elements. Comprehensive analysis, however, demonstrated that gap junction channel movements are not driven by diffusion described to propel plasma membrane protein movement. Instead, recent studies suggest that movements of gap junction channels are indirect and predominantly propelled by plasma membrane lipid flow that results from metabolic endo- and exocytosis.  相似文献   

18.
We describe for the first time the visualization of Golgi membranes in living yeast cells, using green fluorescent protein (GFP) chimeras. Late and early Golgi markers are present in distinct sets of scattered, moving cisternae. The immediate effects of temperature-sensitive mutations on the distribution of these markers give clues to the transport processes occurring. We show that the late Golgi marker GFP-Sft2p and the glycosyltransferases, Anp1p and Mnn1p, disperse into vesicle-like structures within minutes of a temperature shift in sec18, sft1, and sed5 cells, but not in sec14 cells. This is consistent with retrograde vesicular traffic, mediated by the vesicle SNARE Sft1p, to early cisternae containing the target SNARE Sed5p. Strikingly, Sed5p itself moves rapidly to the endoplasmic reticulum (ER) in sec12 cells, implying that it cycles through the ER. Electron microscopy shows that Golgi membranes vesiculate in sec18 cells within 10 min of a temperature shift. These results emphasize the dynamic nature of Golgi cisternae and satisfy the kinetic requirements of a cisternal maturation model in which all resident proteins must undergo retrograde vesicular transport, either within the Golgi complex or from there to the ER, as anterograde cargo advances.  相似文献   

19.
This article presents an original approach for extracting atomic-resolution landscapes of continuous conformational variability of biomolecular complexes from cryo electron microscopy (cryo-EM) single particle images. This approach is based on a new 3D-to-2D flexible fitting method, which uses molecular dynamics (MD) simulation and is embedded in an iterative conformational-landscape refinement scheme. This new approach is referred to as MDSPACE, which stands for Molecular Dynamics simulation for Single Particle Analysis of Continuous Conformational hEterogeneity. The article describes the MDSPACE approach and shows its performance using synthetic and experimental datasets.  相似文献   

20.
Actin filament assembly is critical for eukaryotic cell motility. Arp2/3 complex and capping protein (CP) regulate actin assembly in vitro. To understand how these proteins regulate the dynamics of actin filament assembly in a motile cell, we visualized their distribution in living fibroblasts using green flourescent protein (GFP) tagging. Both proteins were concentrated in motile regions at the cell periphery and at dynamic spots within the lamella. Actin assembly was required for the motility and dynamics of spots and for motility at the cell periphery. In permeabilized cells, rhodamine-actin assembled at the cell periphery and at spots, indicating that actin filament barbed ends were present at these locations. Inhibition of the Rho family GTPase rac1, and to a lesser extent cdc42 and RhoA, blocked motility at the cell periphery and the formation of spots. Increased expression of phosphatidylinositol 5-kinase promoted the movement of spots. Increased expression of LIM–kinase-1, which likely inactivates cofilin, decreased the frequency of moving spots and led to the formation of aggregates of GFP–CP. We conclude that spots, which appear as small projections on the surface by whole mount electron microscopy, represent sites of actin assembly where local and transient changes in the cortical actin cytoskeleton take place.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号