首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The immunosuppressant, rapamycin, inhibits cell growth by interfering with the function of a novel kinase, termed mammalian target of rapamycin (mTOR). The putative catalytic domain of mTOR is similar to those of mammalian and yeast phosphatidylinositol (PI) 3-kinases. This study demonstrates that mTOR is a component of a cytokine-triggered protein kinase cascade leading to the phosphorylation of the eukaryotic initiation factor-4E (eIF-4E) binding protein, PHAS-1, in activated T lymphocytes. This event promotes G1 phase progression by stimulating eIF-4E-dependent translation initiation. A mutant YAC-1 T lymphoma cell line, which was selected for resistance to the growth-inhibitory action of rapamycin, was correspondingly resistant to the suppressive effect of this drug on PHAS-1 phosphorylation. In contrast, the PI 3-kinase inhibitor, wortmannin, reduced the phosphorylation of PHAS-1 in both rapamycin-sensitive and -resistant T cells. At similar drug concentrations (0.1-1 microM), wortmannin irreversibly inhibited the serine-specific autokinase activity of mTOR. The autokinase activity of mTOR was also sensitive to the structurally distinct PI 3-kinase inhibitor, LY294002, at concentrations (1-30 microM) nearly identical to those required for inhibition of the lipid kinase activity of the mammalian p85-p110 heterodimer. These studies indicate that the signaling functions of mTOR, and potentially those of other high molecular weight PI 3-kinase homologs, are directly affected by cellular treatment with wortmannin or LY294002.  相似文献   

2.
Previously we reported the presence of a soluble phosphatidylinositol 4-kinase (PI 4-Kinase) in carrot (Daucus carota L.) suspension culture cells (C.M. Okpodu, W. Gross, W.F. Boss [1990] Plant Physiol 93: S-63). We have purified the enzyme over 1000-fold using Q-Sepharose ion exchange, hydroxylapatite, and G-100 gel filtration column chromatography. The Mr of the enzyme was estimated to be 83,000 by gel filtration. PI 4-kinase activity was recovered after renaturation of the 80-kD region of polyacrylamide gels, and an 80-kD peptide cross-reacted with antibodies to the yeast 55-kD membrane-associated PI 4-kinase on western blots. The isolated lipid kinase phosphorylated PI but not lysophosphatidylinositol or phosphatidylinositol monophosphate. Maximal PI kinase activity occurred when the substrate was added as Triton X-100/PI mixed micelles at pH 8. The enzyme required divalent cations. At low concentrations (1-5 mM), Mn2+ was more effective than Mg2+ in increasing enzyme activity; however, maximal activity occurred at 25 to 40 mM Mg2+. Calcium from 0.01 [mu]M to 1 mM had no effect on the enzyme activity. The Km of the enzyme for ATP was estimated to be between 400 and 463 [mu]M. The enzyme was inhibited by adenosine (100 [mu]M); however, ADP (up to 100 [mu]M) had no effect on the activity. The biochemical characteristics of the carrot soluble PI 4-kinase are compared with the previously reported PI 4-kinases from animals and yeast.  相似文献   

3.
The mammalian tumor suppressor, phosphatase and tensin homologue deleted on chromosome 10 (PTEN), inhibits cell growth and survival by dephosphorylating phosphatidylinositol-(3,4,5)-trisphosphate (PI[3,4,5]P3). We have found a homologue of PTEN in the fission yeast, Schizosaccharomyces pombe (ptn1). This was an unexpected finding because yeast (S. pombe and Saccharomyces cerevisiae) lack the class I phosphoinositide 3-kinases that generate PI(3,4,5)P3 in higher eukaryotes. Indeed, PI(3,4,5)P3 has not been detected in yeast. Surprisingly, upon deletion of ptn1 in S. pombe, PI(3,4,5)P3 became detectable at levels comparable to those in mammalian cells, indicating that a pathway exists for synthesis of this lipid and that the S. pombe ptn1, like mammalian PTEN, suppresses PI(3,4,5)P3 levels. By examining various mutants, we show that synthesis of PI(3,4,5)P3 in S. pombe requires the class III phosphoinositide 3-kinase, vps34p, and the phosphatidylinositol-4-phosphate 5-kinase, its3p, but does not require the phosphatidylinositol-3-phosphate 5-kinase, fab1p. These studies suggest that a pathway for PI(3,4,5)P3 synthesis downstream of a class III phosphoinositide 3-kinase evolved before the appearance of class I phosphoinositide 3-kinases.  相似文献   

4.
The metabolism of polyphosphoinositides has been shown to be an important factor in controlling the proliferation of Saccharomyces cerevisiae. The monophosphate form of phosphatidylinositol has been assumed to be phosphatidylinositol 4-phosphate (PI-4-P). Recent evidence from our laboratory has established that a phosphatidylinositol (PI) kinase, which phosphorylates the D-3 position of the inositol ring (PI 3-kinase), is associated with many activated protein-tyrosine kinases and may play an important role in the signaling of cell proliferation (Auger, K. R., Serunian, L. A., Soltoff, S. P., Libby, P., and Cantley, L. C. (1989) Cell 57, 167-175). To determine the evolutionary conservation of this enzymatic activity, we investigated its presence in yeast. In vitro PI kinase assays of yeast cell homogenates demonstrated that PI 3-kinase activity was present. Preliminary biochemical characterization of the activity suggested that it was quite different from the mammalian enzyme yet catalyzed the same reaction, i.e. phosphorylating the D-3 hydroxyl position of the inositol ring of phosphatidyl-myo-inositol. [3H]Inositol labeling of intact yeast cells with the subsequent extraction, deacylation, and high performance liquid chromatography analysis of the lipids demonstrated that PI-3-P was as abundant as the PI-4-P isomer. The conservation of the enzymatic activity from yeast to man suggests that it has an important functional role in the cell cycle.  相似文献   

5.
Phosphoinositide (PI) 3-kinases have been characterized as enzymes involved in receptor signal transduction in mammalian cells and in a complex which mediates protein trafficking in yeast. PI 3-kinases linked to receptors with intrinsic or associated tyrosine kinase activity are heterodimeric proteins, consisting of p85 adaptor and p110 catalytic subunits, which can generate the 3-phosphorylated forms of phosphatidylinositol (PtdIns), PtdIns4P and PtdIns(4,5)P2 as potential second messengers. Yeast Vps34p kinase, however, has a substrate specificity restricted to PtdIns and is a PtdIns 3-kinase. Here the molecular characterization of a new human PtdIns 3-kinase with extensive sequence homology to Vps34p is described. PtdIns 3-kinase does not associate with p85 and phosphorylates PtdIns, but not PtdIns4P or PtdIns(4,5)P2. In vivo PtdIns 3-kinase is in a complex with a cellular protein of 150 kDa, as detected by immunoprecipitation from human cells. Protein sequence analysis and cDNA cloning show that this 150 kDa protein is highly homologous to Vps15p, a 160 kDa protein serine/threonine kinase associated with yeast Vps34p. These results suggest that the major components of the yeast Vps intracellular trafficking complex are conserved in humans.  相似文献   

6.
牛小脑肌醇磷脂激酶PI(4)K高产率纯化与特征   总被引:1,自引:0,他引:1  
对牛小脑膜区肌醇磷脂激酶进行了11 500倍纯化,过程包括:TritonX-100抽提,硫酸铵沉淀,阳离子交换层析(phosphocellulose),亲和层析(Heparin Sepharose CL-6B)和阴离子交换层析(DEAE10,FPLC)等.纯化程度可达95%以上,对SDS-PAGE电泳结果进行扫描分析测其分子质量为56 ku.纯化的肌醇磷脂激酶的特异活性为450 nmol/mg·min, 动力学性质表现为ATP的表观Km值为7.9×10-7 mol/L,PI的表观Km值为6.6×10-7 mol/L. 腺嘌呤核苷是该酶的有效抑制剂,3.5×10-7 mol/L腺嘌呤核苷可使该酶活力降低约50%,而TritonX-100对该酶活力具有刺激作用,0.5% TritonX-100可使该酶表现为最高活力.  相似文献   

7.
Phosphatidylinositol (PI) 4-kinases catalyze the synthesis of PI 4-phosphate, an important intermediate for the synthesis of membrane polyphosphoinositides, regulators of multiple cellular functions. Two mammalian PI 4-kinases have been cloned, a 230-kDa enzyme (alpha-form) and a 110-kDa (beta-form), both of which are inhibited by >0.1 microm concentrations of the PI 3-kinase inhibitor, wortmannin (WT). In the present study, we created a glutathione S-transferase-PI4Kbeta fusion protein for expression in Escherichia coli. The purified protein was biologically active and phosphorylated PI in its 4-position with WT sensitivity and kinetic parameters that were identical to those of purified bovine brain PI4Kbeta. In addition to its lipid kinase activity, the enzyme exhibited autophosphorylation that was enhanced by Mn(2+) ions and inhibited by WT and another PI 3-kinase inhibitor, LY 294002. The recombinant protein was unable to transphosphorylate, but its isolated C-terminal catalytic domain still displayed autophosphorylation, suggesting that the autophosphorylation site resides within the C-terminal catalytic domain of the protein and is held in position by intramolecular interactions. Autophosphorylation inhibited subsequent lipid kinase activity, which was reversed upon dephosphorylation, by protein phosphatases, PP1 and PP2A(1), suggesting that it may represent a regulatory mechanism for the enzyme. Phosphorylation of endogenous or overexpressed PI4Kbeta was also observed in COS-7 cells; however, the in vivo phosphorylation of the expressed protein was only partially inhibited by WT and also occurred in a catalytically inactive form of the enzyme, indicating the presence of additional phosphorylation site(s). Successful bacterial expression of PI4Kbeta should aid research on the structure-function relationships of this protein as well as of other, structurally related enzymes.  相似文献   

8.
Phosphatidylinositol 4-kinase has been purified 10,148-fold to a specific activity of 2.7 mumol/mg/min from bovine uteri. This purification was accomplished by detergent extraction of an acetone powder, ammonium sulfate precipitation, and chromatography on MonoQ, S-Sepharose, MonoP, and hydroxylapatite columns. The purified enzyme has a molecular mass of 55 kDa and appears to be monomeric. Kinetic analyses of the enzymatic activity demonstrated apparent Km values of 18 microM and 22 micrograms/ml (approximately 26 microM) for ATP and phosphatidylinositol, respectively, optimal activity in the pH range of 6.0-7.0, and a sigmoidal dependence of enzymatic activity on [Mg2+]. Ca2+ inhibited the enzyme at nonphysiological concentrations with 50% inhibition observed at a free [Ca2+] of approximately 300 microM. The purified enzyme efficiently utilized both ATP and 2'-deoxy-ATP as phosphoryl donors and specifically phosphorylated phosphatidylinositol on the fourth position. No phosphatidylinositol-4-phosphate 5-kinase activity was observed in the purified enzyme preparations. To our knowledge, this is the first reported purification of a phosphatidylinositol-specific phosphatidylinositol 4-kinase.  相似文献   

9.
The recently identified ceramide transfer protein, CERT, is responsible for the bulk of ceramide transport from the endoplasmic reticulum (ER) to the Golgi. CERT has a C-terminal START domain for ceramide binding and an N-terminal pleck-strin homology domain that binds phosphatidylinositol 4-phosphate suggesting that phosphatidylinositol (PI) 4-kinases are involved in the regulation of CERT-mediated ceramide transport. In the present study fluorescent analogues were used to follow the ER to Golgi transport of ceramide to determine which of the four mammalian PI 4-kinases are involved in this process. Overexpression of pleckstrin homology domains that bind phosphatidylinositol 4-phosphate strongly inhibited the transport of C5-BODIPY-ceramide to the Golgi. A newly identified PI 3-kinase inhibitor, PIK93 that selectively inhibits the type III PI 4-kinase beta enzyme, and small interfering RNA-mediated down-regulation of the individual PI 4-kinase enzymes, revealed that PI 4-kinase beta has a dominant role in ceramide transport between the ER and Golgi. Accordingly, inhibition of PI 4-kinase III beta either by wortmannin or PIK93 inhibited the conversion of [3H]serine-labeled endogenous ceramide to sphingomyelin. Therefore, PI 4-kinase beta is a key enzyme in the control of spingomyelin synthesis by controlling the flow of ceramide from the ER to the Golgi compartment.  相似文献   

10.
Phosphoinositide 3-kinases and membrane traffic   总被引:8,自引:0,他引:8  
Phosphoinositide 3-kinases (PI 3-kinases) and their 3-phosphoinositide products were identified initially as components of intracellular signalling pathways emanating from cell surface receptors. A new role for 3-phosphoinositides in the constitutive movement o f proteins from one intracellular compartment to another was proposed with the discovery of homology between the product of a yeast gene important for vacuolar sorting, Vps34p, and a mammalian PI 3-kinase. Recent studies have implicated PI 3-kinase as an essential component in membrane traffic at specific steps o f the trans-Golgi-network-endosomal pre-lysosomal system. Evidence largely emerging from the insulin-stimulated glucose transport system suggests that PI 3-kinase may also mediate the effects o f growth factors on membrane traffic events. These studies suggest a possible link between growth-factor-stimulated and constitutive membrane traffic in the endosomal system.  相似文献   

11.
A PtdIns 4-kinase from rat spleen particulate fraction was purified to homogeneity and its molecular properties were compared with a PtdIns 4-kinase from splenic lymphocytes. The enzyme activity was solubilized from spleen particulate fraction with Triton X-100 and chromatographed sequentially on phosphocellulose, DEAE-sephacel, heparin acrylamide and hydroxyapatite columns. The purified enzyme preparation showed a 55 kDa band on SDS-PAGE with silver staining. Renaturation of the enzyme activity from SDS-PAGE showed that it comigrated with the 55 kDa protein. Characterization of the enzyme showed that it was a type II PtdIns 4-kinase. Polyclonal antibodies raised against PtdIns 4-kinase inhibited the enzyme activity in in vitro assays. Analysis of adult rat tissue particulate fractions on immunoblots showed restricted immunoreactivity among PtdIns 4-kinases. However, the immunoreactivity is conserved in lymphoid tissues from mouse to human, suggesting that lymphoid tissue has a distinct PtdIns 4-kinase. Activation of rat splenocytes with Con A showed two fold increase in PtdIns 4-kinase activity. Comparison of PtdIns 4-kinases from spleen and splenic lymphocytes showed identical chromatographic behaviour, molecular mass, immunoreactivity, K(m) values for PtdIns and inhibition by adenosine.  相似文献   

12.
Squalene epoxidase (EC 1.14.99.7, squalene 2,3-monooxygenase (epoxidizing) was purified to an apparent homogeneity from rat liver microsomes. The purification was carried out by solubilization of microsomes by Triton X-100, fractionation with ion exchangers, hydroxyapatite, Cibacron Blue Sepharose 4B, and chromatofocusing column chromatography. A total purification of 143-fold over the first DEAE-cellulose fraction was achieved. The purified enzyme gave a single major band on SDS-polyacrylamide gel electrophoresis and the Mr was estimated to be 51 000 as a single polypeptide chain. The enzyme showed no distinct absorption spectrum in the visible regions. The squalene epoxidase activity was reconstituted with the purified enzyme, NADPH-cytochrome P-450 reductase (EC 1.6.2.4), FAD, NADPH and molecular oxygen in the presence of Triton X-100. The apparent Michaelis constants for squalene and FAD were 13 microM and 5 microM, respectively. The Vmax was about 186 nmol per mg protein per 30 min for 2,3-oxidosqualene. The enzyme activity was not inhibited by potent inhibitors of cytochrome P-450. It is suggested that squalene epoxidase is distinct from cytochrome P-450 isozymes.  相似文献   

13.
14.
Inositol 1,4,5-trisphosphate (InsP3) 3-kinase, which phosphorylates InsP3 to form inositol 1,3,4,5-tetrakisphosphate, was purified to apparent homogeneity by (NH4)2SO4 fractionation and sequential chromatographic steps on DEAE-sepharose, calmodulin-Affi-Gel and DEAE-5PW h.p.l.c. The purified enzyme had a specific activity of 24.4 nmol of inositol tetrakisphosphate formed/min per mg of protein, which represented a purification of approx. 195-fold with a 0.29% recovery, compared with the cytosol fraction of the muscle. SDS/polyacrylamide-gel electrophoresis showed a single protein-staining band of Mr 93,000. Moreover, the major protein peak, of Mr 84,000, was detected by TSK gel G3000SW gel-permeation chromatography of the purified sample. As this value was approximately consistent with the Mr determined by SDS/polyacrylamide-gel-electrophoretic analysis, the InsP3 3-kinase might be a monomeric enzyme. The purified enzyme had a Km for InsP3 of 0.4 microM, with an optimum pH range of 5.8-7.7. The enzyme was maximally activated by calmodulin, with a stoichiometry of 1:1.  相似文献   

15.
By constructing DNA probes we have identified and cloned a human PtdIns 4-kinase, PI4K230, corresponding to a mRNA of 7.0 kb. The cDNA encodes a protein of 2044 amino acids. The C-terminal part of ca. 260 amino acids represents the catalytic domain which is highly conserved in all recently cloned PtdIns 4-kinases. N-terminal motifs indicate multiple heterologous protein interactions. Human PtdIns 4-kinase PI4K230 expressed in vitro exhibits a specific activity of 58 micromol mg-1min-1. The enzyme expressed in Sf9 cells is essentially not inhibited by adenosine, it shows a high Km for ATP of about 300 microM and it is half-maximally inactivated by approximately 200 nM wortmannin. These data classify this enzyme as type 3 PtdIns 4-kinase. Antibodies raised against the N-terminal part moderately activate and those raised against the C-terminal catalytic domain inhibit the enzymatic activity. The coexistence of two different type 3 PtdIns 4-kinases, PI4K92 and PI4K230, in several human tissues, including brain, suggests that these enzymes are involved in distinct basic cellular functions.  相似文献   

16.
Most of human platelet phosphatidylinositol (PI) kinase activity (approx. 80%) was associated with the membrane fraction and its majority was released by the extraction with Triton X-100 after KCl treatment. Two major activity peaks (mPIK-I and mPIK-III) were obtained by Mono Q column chromatography. They were distinct from each other with regard to Mr (76,000 and 80,000 as determined by gel-filtration chromatography), apparent Km values for ATP, effect of arachidonic acid and phosphatidylserine and detergent requirement. Triton X-100 inhibited the activity of mPIK-I but rather weakly enhanced the mPIK-III activity, and sodium cholate remarkably inhibited both mPIK-I and mPIK-III activities. Their products were identified to be phosphatidylinositol 4-phosphate. On the other hand, about 20% of PI kinase activity was recovered from the cytosolic fraction and two activity peaks (cPIK-I and cPIK-II) were resolved on Mono Q column chromatography. There were no significant differences in biochemical properties between cPIK-I and cPIK-II. Both of them had Mr approx. 550,000 as determined by gel-filtration chromatography and were activated by sodium cholate to a greater extent than by Triton X-100. The results suggest that the major PI kinases (mPIK-I and mPIK-III) are PI 4-kinase and mPIK-I is distinct from PI 4-kinases in other sources especially with regard to the effect of Triton X-100.  相似文献   

17.
Shpakov AO 《Tsitologiia》1999,41(11):975-991
This review presents literary data and results of the author own studies on structural and functional characteristics of regulatory (p55/p85) and catalytic (p110) subunits of heterodimeric phosphatidylinositol-3-kinases (PI-3-kinases), and on molecular mechanisms of their functional conjugation with other signaling system components, regulated by insulin and growth factors. Various models simulating the interaction of regulatory subunits of PI-3-kinase and of their substrates (insulin receptor sustrate proteins phosphorylated on tyrosin residues) with molecules of receptors-tyrosinekinases have been considered. Mechanisms of the functional conjugation between regulatory and catalytic enzyme subunits are discussed, with special reference to a possible role of the coiled-coil interactions in this process.  相似文献   

18.
19.
A novel neutral aminopeptidase (NAP-2) was found exclusively in the rat central nervous system (CNS). It was separated from the ubiquitous puromycin-sensitive aminopeptidase (PSA) and the neuron-specific aminopeptidase (NAP) by an automated FPLC-aminopeptidase analyzer. The activity of the neuronal aminopeptidase enriched in the synaptosomes is different from NAP and PSA in distribution and during brain development. The enzyme was purified 2230-fold to apparent homogeneity from rat brain cytosol with 4% recovery by ammonium sulfate fractionation, followed by column chromatography successively on Phenyl-Sepharose, Q-Sepharose, Sephadex G-200, and Mono Q. The single-chain enzyme with a molecular mass of 110kDa has an optimal pH of 7.0 and a pI of 5.6. It splits beta-naphthylamides of amino acid with aliphatic, polar uncharged, positively charged, and aromatic side chain. Leucyl beta-naphthylamide (Leu betaNA) is the best substrate with the highest hydrolytic coefficiency followed by Met betaNA=Arg betaNA=Lys betaNA>Ala betaNA>Tyr betaNA>Phe betaNA. The cysteine-, metallo-, glyco-aminopeptidase releases the N-terminal Tyr from Leu-enkephalin with a K(m) 82microM and a k(cat) of 1.08s(-1), and Met-enkephalin with a K(m) of 106microM and a k(cat) of 2.6s(-1). The puromycin-sensitive enzyme is most susceptible to amastatin with an IC(50) of 0.05microM. The data indicate that the enzyme is a new type of NAP found in rodent. Its possible function in neuron growth, neurodegeneration, and carcinomas is discussed.  相似文献   

20.
Two types of phosphatidylinositol (PI) 3-kinase (PI3K) have been purified 6250-fold (PI3KI) and 1250-fold (PI3KII) from the cytosol fraction of bovine thymus. Purified PI3KI and PI3KII were found to have apparent molecular masses of 110 and 190 kDa, respectively, by gel filtration. On the other hand, on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, while the molecular mass of PI3KI was again estimated as 110 kDa, PI3KII showed two bands with apparent molecular masses of 110 and 85 kDa, suggesting a heterodimer form. Peptide mapping analysis demonstrated that the 110-kDa protein in PI3KII was the same protein as PI3KI. The specific activity of PI3KI was calculated as 250 nmol/min/mg of protein, while that of PI3KII was 50 nmol/min/mg of protein. The product of PI phosphorylation by PI3KI and PI3KII were confirmed as phosphatidylinositol 3-phosphate by PartiSphere Sax column chromatography. The results show that there are two types of PI 3-kinase in bovine thymus. One exists as a monomer and the other as a heterodimer form. Furthermore, the biochemical properties of these two PI 3-kinases are markedly different. These two types of PI 3-kinase may be regulated differently under physiological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号