首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MDCK cells maintained on extracellular matrix (ECM)-coated dishes and exposed to Dulbecco's modified Eagle's medium (DME) supplemented with transferrin and either high-density lipoproteins (HDLs) or phosphatidyl choline (PC) liposomes have a growth rate and final cell density similar to those of cultures exposed to serum-supplemented DME. When MDCK cells are exposed to a medium consisting of a mixture (1:1) of DME and F12 medium (D/F), the addition of transferrin (10 μg/ml) alone supports cell growth and the presence of HDLs or PC liposomes is no longer required. MDCK cells exposed to D/F medium supplemented with transferrin can be passaged for more than 50 generations in total absence of serum. The F12 components that support growth in the absence of HDLs or PC liposomes are biotin (which is absent in DME) and choline (which is present in insufficient concentration in DME). Supplementation of DME with transferrin, biotin (3.6 ng/ml), and choline (10 μg/ml) allows optimal growth of MDCK cells and permits serial propagation through more than 50 generations. The growth requirement of MDCK cells for HDLs or PC liposomes can therefore be replaced by adequate concentrations of biotin and choline. The widely observed fact that a combination of DME/F12 medium is more effective than DME alone in supporting cell growth may be due in part to the lack of biotin and suboptimal choline concentration in DME.  相似文献   

2.
Summary Five human tumor cell lines were studied for growth factor requirements and for replication in serum-free media. Of the five tumor lines HT-29 (colon carcinoma), TWI (melanoma), A-549 (lung carcinoma), Panc-1, (carcinoma of the pancreas) and EJ, (bladder carcinoma) only HT-29 and TWI grew in the serum-free medium (SFM). In a series of additional experiments, a combination of transferrin (5 μg/ml), insulin (5 μg/ml), triiodothyronine (2×10−10 M), epidermal growth factor (20 ng/ml), and selenium (5 ng/ml) was added to Chee’s essential medium (CEM) without serum (C-TITES medium). The C-TITES modification of CEM was found to allow optimal replication of HT-29 and TWI cells. Both HT-29 and TWI cells have replicated continuously in C-TITES medium for periods of more than 15 mo. These cells replicate with slightly lower doubling times than in CEM supplemented with 10% fetal bovine serum. Deletion of insulin or transferrin from the C-TITES medium resulted in cessation of cell growth of HT-29 and TWI. HT-29 assumed a somewhat rounded morphology, whereas TWI grew with the characteristic fibroblastic morphology in C-TITES medium. Cell line EJ did not grow in C-TITES medium. The other two cell lines, A-549 and Panc-1, grew in C-TITES medium but their growth rate was much slower than that in SSM. Availability of cell lines that can be propagated in serum-free, hormone-supplemented medium may aid in the study of the mechanisms by which hormones influence cell growth. This work was supported by Veterans Administration Research Awards to two of the authors (Karimullah A. Zirvi and George J. Hill) and grant no. CA-37138 from the National Cancer Institute.  相似文献   

3.
Summary We have previously reported that Reuber H-35 rat hepatoma cells secrete an autocrine growth-stimulating activity in serum-free culture. To characterize this activity, conditioned serum-free medium from dense H-35 donor cultures was collected in the absence and presence of [35S]methionine. A 1∶4 dilution of conditioned medium into fresh serum-free medium resulted in an increase in mean H-35 cell numbers per assay dish from 1.59±0.12×105 to 3.35±0.34×105 after 44 h of incubation. Control, unconditioned medium, resulted in significantly (P<0.05) less growth (2.14±0.41×105 cells per dish). Trypsin digestion eliminated the growth-promoting effect of conditioned medium but had no effect on unconditioned medium. Dialysis did not diminish the growth-promoting activity of conditioned medium. The immunoprecipitate of [35S]methionine-containing conditioned medium with antisera against rat serum transferrin contained a dominant radioactive doublet of molecular weight equal to purified rat serum transferrin. A rat transferrin radioimmunoassay was devised and used to quantitate that 29.1±1.2 ng of transferrin was secreted per 106 cells per hour in serum-free culture. Addition of antitransferrin antibody resulted in a significant (P<0.025) decrease in H-35 cell growth after 48 h. Thus, a portion of the autocrine growth-promoting activity secreted by H-35 cells into serum-free culture is due to transferrin. This work was funded by a feasibility grant from the American Diabetes Association, as well as by grants CA 24604-09 and CA 16463-14 from The National Institutes of Health, Bethesda, MD.  相似文献   

4.
Because of a lack of information of the optimum nutritional requirements, epithelial cells derived from normal human prostate and prostate tumors have been difficult to propagate in vitro, which hinders research in prostate carcinogenesis. In an effort to establish optimum nutritional conditions and differences in growth characteristics of normal human prostate (NP), benign prostatic hyperplasia (BPH), and prostatic carcinoma (PCA), we have compared the effects of several growth factors on cell proliferation and elucidated growth properties of low passage epithelial cells derived from NP, BPH, and PCA of an African-American patient. Primary and low passage cultures were propagated in serum-free keratinocyte basal medium (KBM) supplemented with insulin (5 μg/ml), hydrocortisone (0.5 μg/ml), epidermal growth factor (EGF, 10 ng/ml), bovine pituitary extract (BPE; 50 μg/ml), cholera toxin (10 ng/ml), and antibiotics. Almost all NP, BPH, and PCA cells were positive for cytokeratins and prostate-specific antigen (PSA). The NP, BPH, and PCA cells were essentially diploid and lacked mutations in c-K-ras and c-Ha-ras oncogenes, and p53 tumor suppressor gene. However, they exhibited progressively accelerating growth parameters. The population doubling times of NP, BPH and PCA were 51 hr, 37 hr, and 29 hr, respectively; their saturation densities were 2.9 × 104/cm2, 3.3 × 104/cm2, and 7.2 × 104/cm2, respectively. The NP and BPH cells required all of the growth factors in the medium, as deletion of any one of the above factors strongly inhibited their growth. The PCA cells, however, were independent of EGF and hydrocortisone. PC-3, an established human prostate cancer cell line, was independent of the growth factors tested. Fetal bovine serum (FBS) inhibited the growth of NP, BPH and PCA cells. In contrast, FBS stimulated the growth of the PC-3 cells in a concentration-dependent manner. These results indicate that in the absence of any apparent karyotype alterations and mutations in c-K-ras, c-Ha-ras and p53 genes, epithelial cells derived from NP, BPH, and PCA exhibit significant differences in their growth properties and responses to growth factors. These variations may represent early changes involved in prostate cancer, while gene mutations and cytogenetic alterations occur in advanced and/or metastatic tumors. © 1996 Wiley-Liss, Inc.  相似文献   

5.
The serum supplement used in the culture of a variety of mammalian cells can be replaced by known growth factors. Diploid Chinese hamster fibroblasts (CHEF/18) will grow for several days in a medium (4F) supplemented with four growth factors: epidermal growth factor (EGF), insulin, fibroblast growth factor (FGF), and transferrin. The growth rate is only about 50% as fast as when fetal calf serum is added. This difference is eliminated by thrombin (10–100 ng/ml; 0.3–3 nM). The CHEF/18 cell line is unique in that no other cell line responds to thrombin in this concentration range. Thrombin acts synergistically with other growth factors to stimulate CHEF/18 cell growth. By itself, thrombin is only mitogenic at elevated concentrations. Thrombin can largely compensate for the absence of EGF and partly for the absence of insulin in serum-free media. Chemically and “spontaneously” transformed cell lines related to CHEF/18 have lost requirements for both EGF and thrombin, and have retained requirements for insulin and transferrin expressed by CHEF/18. No CHEF cells in this work required FGF. These results suggest that the mechanisms by which EGF and thrombin stimulate cells to grow are related.  相似文献   

6.
A clone, AH-01S, derived from a human monocytic leukemia cell line, THP-1, grew rapidly in a serum-free medium containing insulin, transferrin, ethanolamine, and sodium selenite. In batch culture using the serum-free medium, the AH-01S cells proliferated at a specific growth rate (μ) of 0.30 to 0.50 (1/day) from a cell concentration of 1 × 104 cells/ml to 1.6 × 106 cells/ml, an increase of 160 times. A higher cell concentration of 0.45 × 107 cells/ml (cell volume ratio was 0.5%) was obtained in spinner flask culture using the serum-free medium. A mean specific growth rate 0.50 (1/day) was also observed in a culture in a fully instrumented cell culture fermentor. However, μ decreased drastically after the cell concentration reached 1.5 × 106 cells/ml. Analyses of medium composition during cultivation revealed that under lower cell concentration, l-glutamine was the main carbon source while glucose was converted to lactate almost stoichiometrically, and that the production of lactate from glucose decreased at higher cell concentrations. To obtain cultures of 1 × 109 cells, 1,200 to 1,300 mg of a carbon source (glucose) and 400 to 500 of amino acids were consumed during high cell concentration cultivation of the AH-01S cells in the serum-free medium.  相似文献   

7.
A cultured rat ovarian cell line (31 A-F(2)) was used to study the effect of growth factors (epidermal growth factor [EGF] and fibroblast growth factor [FGF]), a survival factor (ovarian growth factor [OGF]), a hormone (insulin), and an iron-binding protein (transferring) on cell proliferation and steroid production under defined culture conditions. EGF and insulin were shown to be mitogenic (half-maximal response at 0.12 nM and 0.11 muM, respectively) for 31A-F(2) cells incubated in serum-free medium. EGF induced up to three doublings in the cell population, whereas insulin induced an average of one cell population doubling. FGF, OGF, and transferrin were found not to have any prominent effect on cell division when incubated individually with 31A-F(2) cells in serum-free medium. However, a combination of EGF, OGF, insulin, and transferrin stimulated cell division to the same approximate extent as cells incubated in the presence of 5 percent fetal calf serum. EGF or insulin did not significantly affect total cell cholesterol levels (relative to cells incubated in serum-free medium) when incubated individually with 31A-F(2) cells. However, cell cholesterol levels were increased by the addition of OGF (250 percent), FGF (370 percent), or a combination of insulin and EGF (320 percent). Progesterone secretion from 31A-F(2) cells was enhanced by EGF (25 percent), FGF (80 percent), and insulin (115 percent). However, the addition of a mitogenic mixture of EGF, OGF, insulin, and transferrin suppressed progesterone secretion 150 percent) below that of control cultures. These studies have permitted us to determine that EGF and insulin are mitogenic factors that are required for the growth of 31A-F(2) cells and that OGF and transferrin are positive cofactors that enhance growth. Also, additional data suggest that cholesterol and progesterone production in 31A-F(2) cells can be regulated by peptide growth factors and the hormone insulin.  相似文献   

8.
Summary A novel serum-free medium for the cultivation of Vero cells on microcarriers was developed,which composed of the 1:1 mixture of Dubecco's Modified Eagle Medium: Nutrient Mixture F12, bovine serum albumin(BSA) or human serum albumin(HSA), epidermal growth factor(EGF), gelatin and Dbiotin. Both BSA and EGF were effective on cell growth, adhesion and spreading. Further addition of gelatin and biotin led to the enhanced cell adhesion and spreading without growth promoting activity. The serum-free medium was suitable for the cultivation of vero cells on several different microcarriers with cell density reached over 3×l06cells/ml.  相似文献   

9.
Summary Epithelial cells from mouse seminal vesicles were enzymatically dissociated enriched by gradient centrifugation, and maintained in collagen gel cultures with defined (serum-free) media. The epithelial origin of the cells was determined morhologically, immunocytochemically, and biochemically. Cells formed three-dimensional colonies with a lumen in collagen gels. Cell number was increased eight-fold within a 8 to 12-d culture period in a medium supplemented with epidermal growth factor (EGF) (10 ng/ml), insulin (10 μg/ml), transferrin (10 μg/ml), cholera toxin (10 ng/ml), and hydrocortisone (0.1 μg/ml). The cells required eGF and insulin; the growth-promoting effects of these two peptide hormones were optimized by transferrin, cholera toxin, and hydrocortisone. Fetal bovine serum did not support growth; rather, it suppressed the stimulated growth observed in serum-free media. A time-course study revealed that a lag period preceded rapi growth. The collagen gel, serum-free culture provides a powerful tool to study the effects of hormones on proliferation and differentiation of androgen sensitive cells.  相似文献   

10.
High affinity receptors for insulin, transferrin, epidermal growth factor (EGF) and a multiplication-stimulating activity (MSA) have been identified and partially characterized on a mouse embryonal carcinoma cell line, OTT-6050, using various 125I-ligands. With the exception of MSA receptors which bound both MSA and insulin, the receptors for EGF, insulin and transferrin exhibited specificity of binding for their respective ligands. There is a correlation between the saturation of these receptors and the concentration of growth factors necessary for optimal growth of OTT-6050 cells in serum-free medium supplemented with insulin (or MSA), transferrin, EGF, fibroblast growth factor (FGF) and Pedersen fetuin on culture surfaces treated with polylysine or various types of collagen. Cells cultured in this medium exhibit growth rates equivalent to that observed with cells maintained in medium containing 5% fetal calf serum (FCS). These results suggest that relatively undifferentiated mouse embryonal carcinoma cells or endoderm cells possess receptors for various growth factors and that their presence on these cells is correlated with the ability of these cells to mitogenically respond to these growth factors.  相似文献   

11.
Friedl P  Tatje D  Czpla R 《Cytotechnology》1989,2(3):171-179
Various polypeptide growth factors, culture substrates, basal media, sera and further supplements were assayed for improvement of growth of human vascular endothelial cells from umbilical cord veins. The resulting optimized medium consisted of gelatinized culture substrates, a mixture (1:1) of Iscove's MDM and Ham's F12 basal media supplemented with 20% newborn calf serum, 500 ng/ml crude fibroblast growth factor, 20 ng/ml epidermal growth factor, 5 g/ml transferrin, 5 g/ml insulin and 10 g/ml heparin. The medium allowed long term cultivation of HUVEC up to 45 generations with maximal cell densities of about 105 cells per cm2 and a minimal doubling time of about 14 hours at low cell densities.Abbreviations HUVEC Human Endothelial Cells From Umbilical Cord Veins - FGF Fibroblast growth factor - EGF Epidermal Growth Factor - FCS Fetal Calf Serum - NCS Newborn Calf Serum - HBS HEPES-Buffered Saline - ECM Extracellular Matrix - LHM Peptide PyroGlu-His-Ser-Phe-Thr-Ile-Lys-Ile-ThrCONH2 - IF 1:1 mixture of Iscove's MDM and F12 basal media  相似文献   

12.
Hydrocortisone modulates the binding capacity of HeLa cells for 125I-labeled epidermal growth factor (EGF). A twofold increase in 125I-labeled EGF binding is observed within 24 hours after the addition of pharmacological concentration of hydrocortisone (5 × 10?8?1 × 10?6 M). This enhancement of binding is reversible, and occurs when the cells are cultured in either serum-supplemented or completely defined, serum-free, hormone-supplemented medium. Scatchard analysis of the binding data indicates that the number of 125I-EGF binding sites is increased, and that no appreciable change in the affinity of the EGF receptor for labeled EGF occurs. In the serum-free condition hydrocortisone stimulates the growth of HeLa cells, but we have observed no connection between this growth stimulation and the enhancement of EGF binding. The growth response to hydrocortisone is independent of EGF, and the concentration dependency of the growth response to EGF is unaltered by the addition of hydrocortisone to the medium. Hydrocortisone elicits the growth response at a concentration as low as 5 × 10?9 M, while a concentration higher than 5 × 10?8 M is required to affect the binding capacity for 125I-EGF. These effects are specific for glucocorticoid steroids. Similar concentrations of progesterone, testosterone, or estradiol produce no measurable response. Although the elevation of EGF receptor levels in the serum-supplemented medium is similar to that observed in the serum-free cultures, hydrocortisone is growth-inhibitory under these conditions. This growth inhibition occurs at pharmacological concentrations of hydrocortisone with a concentration dependency that is similar to that of the EGF receptor modulation.  相似文献   

13.
Murine epidermal growth factor (EGF) stimulated the production of prostaglandin E2 (PGE2) and bone resorption in neonatal mouse calvaria in organ culture. The effect of EGF on bone resorption occurred at low concentrations of the polypeptide (half-max stimulation = 0.4 ng/ml, 6.6 × 10?11 M). All concentrations of EGF which stimulated resorption also stimulated the production of PGE2 by bone; concentrations of EGF which did not stimulate resorption did not enhance PGE2 production. EGF-induced formation of PGE2 and bone resorption were inhibited completely by indomethacin (200 ng/ml) and hydrocortisone (3 × 10?6 M). Indomethacin did not inhibit the bone resorption-stimulating activity of exogenous PGE2. The time courses of action of EGF, parathyroid hormone and exogenous PGE2 on bone resorption were similar. Brief exposure (15 or 60 min) to EGF (10 ng/ml) did not cause bone resorption or an increase in PGE2 accumulation in a subsequent 48-h incubation in the absence of EGF. High concentrations (30 to 100 ng/ml) of bovine fibroblast growth factor (FGF) also stimulated the production of PGE2 and bone resorption. We conclude that concentrations of EGF equal to or less than those present in mouse plasma stimulate the resorption of mouse bone in organ culture by a mechanism that involves the enhanced local production of PGE2.  相似文献   

14.
Summary A new synthetic medium (referred to as GC3) that supports the growth of the Chinese hamster ovary cell line has been developed. It is composed of a 1∶1 mixture of Ham's F12 and modified Eagle's minimum essential (MEM.S) mediums supplemented with transferrin (10 μg/ml), insulin (80 mU/ml), and selenium (1×10−7 M). Other more simple supplementations of our basal medium MEM.S/F12 (transferrin+insulin, transferrin+selenium, ferrous iron+selenium) also give good cell growth responses. Fibronectin or serum pretreatment is not needed for cellular attachment and spreading. Our culture system is characterized by a continuous serum-free cultivation (more than 200 doublings), a clonal growth, a high density proliferation, and a rapid growth rate near that of cells in serum-supplemented medium.  相似文献   

15.
Summary A serum-free medium (HMRI-2) has been developed for the outgrowth and subculture of epithelial cells from normal adult human ureter and bladder. Medium HMRI-2 consists of Ham’s MCDB 152 with double the amounts of the essential amino acids in Stock 1, low Ca2+ (0.06 mM) and is supplemented with epithelial growth factor, 5 ng/ml; transferrin, 5 μg/ml; insulin, 5 μg/ml; ethanolamine and phosphoethanolamine, 0.1 mM each; hydrocortisone, 2.8×10−6 M; and bovine pituitary extract, 126 μg protein/ml. The cultured cells showed ultrastructural markers of epithelial cells (prekeratin fibers, tonofilaments, surface microvilli with glycocalyx), exhibited ABO antigens, and had a normal human diploid karyotype. Primary cultures could be subcultured and also cryopreserved in HMRI-2 in liquid nitrogen. Cells in mass cultures showed a population doubling time of 40.5±4.5 h and had a maximum in vitro life span of 20 to 25 population doublings. It was observed that primary outgrowths, secondary cultures, and even cryopreserved cells all retained the capacity to respond to high Ca2+ and serum by differentiation and desquamation. This study has resulted in the availability of easily obtainable serum-free epithelial cultures from normal adult human ureter and bladder. The useful in vitro life span of these cultures may be important in future studies of carcinogenesis. This work was supported by a grant from the National Cancer Institute (R01CA25089), Bethesda, MD.  相似文献   

16.
Experimental conditions have been defined that allow bovine corneal endothelial (BCE) cells to grow in the complete absence of serum. Low density BCE cell cultures maintained on extracellular matrix (ECM)-coated dishes and plated in the total absence of serum proliferate actively when exposed to a synthetic medium supplemented with high density lipoprotein (HDL 500 μg protein/ml), transferrin (10 μg/ml), insulin (5 μg/ml), and fibroblast (FGP) or epidermal growth factor (EGF) added at concentrations of 100 or 50 ng/ml, respectively. Omission of any of these components results in a lower growth rate and/or final cell density of the cultures. BCE cell cultures plated on plastic dishes and exposed to the same synthetic medium grow very poorly. The longevity of BCE cultures maintained on plastic versus ECM and exposed to serum-free versus serum-containing medium has been studied. The use of ECM-coated dishes extended the life span of BCE cultures maintained in serum-supplemented medium to over 120 generations, as compared to less than 20 generations for cultures maintained on plastic. Likewise, BCE cells maintained on ECM and exposed to a synthetic medium supplemented with optimal concentrations of HDL, transferrin, insulin, and FGF underwent 85 generations, whereas control cultures maintained on plastic could not be passaged. The enhancing effect of ECM on BCE cell growth and culture longevity clearly illustrates the importance of the cell substrate in the control of proliferation of these cells.  相似文献   

17.
Bovine adrenal cortex cells maintained on extracellular matrix (ECM)-coated dishes will proliferate actively when serum is replaced by HDL (25 micrograms protein/ml), insulin (10 ng/ml), and FGF (100 ng/ml). The cells have an absolute requirement for HDL in order to survive and grow. The omission of insulin, FGF, or both results in a slower growth rate and lower final cell density of the cultures. A requirement for transferrin (1 microgram/ml) becomes apparent only when cells have been grown for at least four generations in the absence of serum. Early passage (P1-P3) bovine adrenal cortex cells cultured in serum-free medium responded to ACTH (10(-8)M) with increased 11-deoxycortisol production; this effect was not observed in later passage cells (P7-P15). The cells' ability to utilize LDL-derived cholesterol and to respond to db cAMP (1mM) by increased steroid release was preserved in cells cultured for over 60 generations in the serum-free medium. HDL, although also able to increase steroid production in early-passage cultures exposed to ACTH or to ACTH and dibutyryl cyclic AMP (db cAMP), was 10 fold less potent than LDL. It did not support steroidogenesis in cultures not exposed to these trophic agents. The life span of bovine adrenal cortex cells grown in the serum-free medium on fibronectin (FN)- versus ECM-coated dishes was compared. Cells seeded in serum-containing medium and grown in serum-free medium had a life span of 34 versus 60 generations when maintained on fibronectin- or ECM-coated dishes, respectively. Cells seeded in the complete absence of serum in the serum-free medium on ECM- or fibronectin-coated dishes could be passaged for 26 or 13 generations, respectively. While FGF was an absolute requirement for cells cultured on fibronectin-coated dishes, it was not required when cells were maintained on ECM. These observations demonstrate the influence of the ECM not only in promoting cell growth and differentiation but also on the life span of cultured cells.  相似文献   

18.
The serum-free growth of primary cultures of normal human epithelial-like cells from amniotic membranes was accomplished. The synthetic medium consists of a 1 : 1 basal nutrient mixture of Dulbecco's modified Eagle medium (DMEM) and Ham's F-12 supplemented with 2.5 μg/ml insulin, 50 ng/ml epidermal growth factor (EGF), 5 μg/ml transferrin, and 0.1 ng/ml triiodothyronine (T3). EGF is the primary mitogen and is essential for cell proliferation in this system.  相似文献   

19.
Low density vascular smooth muscle (VSM) cell cultures maintained on extracellular-matrix(ECM)-coated dishes and plated in the presence of either plasma or serum will proliferate actively when serum-containing medium is replaced by a synthetic medium supplemented with three factors: high density lipoprotein (HDL, 250 micrograms protein/ml); insulin (2.5 micrograms/ml) or somatomedin C (10 ng/ml); and fibroblast growth factor (FGF, 100 ng/ml) or epidermal growth factor (EGF, 50 ng/ml). The omission of any of these three factors from the synthetic medium results in a lower growth rate of the cultures, as well as in a lower final cell density once cultures reach confluence. When cells are plated in the total absence of serum, transferrin (10 micrograms/ml) is also required to induce optimal cell growth. The effects of the substrate and medium supplements on the life span of VSM cultures have also been analyzed. Cultures maintained on plastic and exposed to medium supplemented with 5% bovine serum underwent 15 generations. However, when maintained on ECM-coated dishes the serum-fed cultures had a life span of at least 88 generations. Likewise, when cultures were maintained in a synthetic medium supplemented with HDL and either FGF or EGF, an effect on the tissue culture life span by the substrate was observed. Cultures maintained on plastic underwent 24 generations, whereas those maintained on ECM-coated dishes could be passaged repeatedly for 58 generations. These experiments demonstrate the influence of the ECM-substrate only in promoting cell growth but also in increasing the longevity of the cultures.  相似文献   

20.
In our studies of the growth-promoting effect of a cytokine, interleukin-1 (IL-1), on cultured porcine granulosa cells, we found that the potency of IL-1 action correlated with the serum concentration in the culture medium and that IL-1 acted synergistically with insulin to increase the number of cells in the presence of low serum concentrations (0.1-1%). With granulosa cells maintained in a quiescent state under serum-free conditions, we therefore examined the effects of combined treatment with IL-1 and peptide growth factors, including insulin, on [3H]thymidine incorporation by these cells. IL-1 by itself enhanced [3H]thymidine incorporation in a concentration-dependent manner. Moreover, IL-1 acted synergistically with insulin, epidermal growth factor (EGF), or fibroblast growth factor (FGF) to enhance [3H]thymidine incorporation. Combinations of maximally effective concentrations of insulin (1 micrograms/ml), EGF (1 ng/ml), or FGF (50 ng/ml) with the maximally effective concentration of IL-1 (10 ng/ml) increased the levels of [3H]thymidine incorporation to 10-, 22-, and 20-fold, respectively, over the control values. Whereas IL-2 (0.1-100 ng/ml) did not affect [3H]thymidine incorporation, tumor necrosis factor alpha (TNF alpha) stimulated [3H]thymidine incorporation by itself and reproduced the actions of IL-1 to act synergistically with insulin, EGF, or FGF. When IL-1 and TNF alpha were added together in relatively low concentrations (1 ng/ml each), the combination had synergistic effects in enhancing [3H]thymidine incorporation. The present study demonstrates that cytokines and peptide growth factors act synergistically to markedly enhance porcine granulosa cell growth in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号