首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study the evolution of an individual’s reproductive strategy in a mechanistic modeling framework. We assume that the total number of juveniles one adult individual can produce is a finite constant, and we study how this number should be distributed during the season, given the types of inter-individual interactions and mortality processes included in the model. The evolution of the timing of reproduction in this modeling framework has already been studied earlier in the case of equilibrium resident dynamics, but we generalize the situation to also fluctuating population dynamics. We find that, as in the equilibrium case, the presence or absence of inter-juvenile aggression affects the functional form of the evolutionarily stable reproductive strategy. If an ESS exists, it can have an absolutely continuous part only if inter-juvenile aggression is included in the model. If inter-juvenile aggression is not included in the model, an ESS can have no continuous parts, and only Dirac measures are possible.  相似文献   

2.
3.
The development of mainstream research on the origin of life as an outcome of Darwinian evolution is discussed. It is argued that prebiotic evolution and the origin of life should not be excluded from the syllabus and should be part of classes on biological evolution, and that the transition from non-living to living matter is best understood when seen as part of evolutionary biology. The wide acceptance of evolutionary approaches to the study of the emergence of life in European and Latin American countries is discussed.  相似文献   

4.
We consider two viral strains competing against each other within individual hosts (at cellular level) and at population level (for infecting hosts) by studying two cases. In the first case, the strains do not mutate into each other. In this case, we found that each individual in the population can be infected by only one strain and that co-existence in the population is possible only when the strain that has the greater basic intracellular reproduction number, R 0c , has the smaller population number R 0p . Treatment against the one strain shifts the population equilibrium toward the other strain in a complicated way (see Appendix B). In the second case, we assume that the strain that has the greater intracellular number R 0c can mutate into the other strain. In this case, individual hosts can be simultaneously infected by both strains (co-existence within the host). Treatment shifts the prevalence of the two strains within the hosts, depending on the mortality induced by the treatment, which is, in turn, dependent upon the doses given to each individual. The relative proportions of the strains at the population level, under treatment, depend both on the relative proportions within the hosts (which is determined by the dosage of treatment) and on the number of individuals treated per unit time, that is, the rate of treatment. Implications for cases of real diseases are briefly discussed.  相似文献   

5.
Smoking has long being associated with tuberculosis. We present a tuberculosis dynamics model taking into account the fact that some people in the population are smoking in order to assess the effects of smoking on tuberculosis transmission. The epidemic thresholds known as the reproduction numbers and equilibria for the model are determined and stabilities analyzed. Qualitative analysis of the model including positivity and persistence of solutions are presented. The model is numerically analyzed to assess the effects of smoking on the transmission dynamics of tuberculosis. Numerical simulations of the model show that smoking enhances tuberculosis transmission, progression to active disease and in a population of smokers, tuberculosis cannot be controlled even when treatment success is assumed to be as high as 88%. Further, analysis of the reproduction numbers indicates that the number of active tuberculosis cases increases as the number of smokers increase.  相似文献   

6.
Epidemic transmission is one of the critical density-dependent mechanisms that affect species viability and dynamics. In a predator-prey system, epidemic transmission can strongly affect the success probability of hunting, especially for social animals. Predators, therefore, will suffer from the positive density-dependence, i.e., Allee effect, due to epidemic transmission in the population. The rate of species contacting the epidemic, especially for those endangered or invasive, has largely increased due to the habitat destruction caused by anthropogenic disturbance. Using ordinary differential equations and cellular automata, we here explored the epidemic transmission in a predator-prey system. Results show that a moderate Allee effect will destabilize the dynamics, but it is not true for the extreme Allee effect (weak or strong). The predator-prey dynamics amazingly stabilize by the extreme Allee effect. Predators suffer the most from the epidemic disease at moderate transmission probability. Counter-intuitively, habitat destruction will benefit the control of the epidemic disease. The demographic stochasticity dramatically influences the spatial distribution of the system. The spatial distribution changes from oil-bubble-like (due to local interaction) to aggregated spatially scattered points (due to local interaction and demographic stochasticity). It indicates the possibility of using human disturbance in habitat as a potential epidemic-control method in conservation.  相似文献   

7.
8.
Parasite and predator play significant role in trophic interaction, productivity and stability of an ecosystem. In this paper, we have studied a host-parasite-predator interaction that incorporates incubation delay. How the qualitative and quantitative behaviors of the system alter with the incubation delay have been discussed both from mathematical and biological point of views. It is observed that for a lower infection rate, the system is stable for all delays; but for a higher infection rate, there exists a threshold value of the delay above which the system is unstable and below which the system is stable leading to the persistence of all the species. Also, the instability arising from the incubation delay may be controlled if somehow the growth rate of predator population is increased. Numerical studies have also been performed to illustrate different analytical findings. Research is supported by UGC, India; F No. 32-173/2006(SR).  相似文献   

9.
A mathematical model is developed to assess the role of gametocytes (the infectious sexual stage of the malaria parasite) in malaria transmission dynamics in a community. The model is rigorously analysed to gain insights into its dynamical features. It is shown that, in the absence of disease-induced mortality, the model has a globally-asymptotically stable disease-free equilibrium whenever a certain epidemiological threshold, known as the basic reproduction number (denoted by ℛ0), is less than unity. Further, it has a unique endemic equilibrium if ℛ0>1. The model is extended to incorporate an imperfect vaccine with some assumed therapeutic characteristics. Theoretical analyses of the model with vaccination show that an imperfect malaria vaccine could have negative or positive impact (in reducing disease burden) depending on whether or not a certain threshold (denoted by ) is less than unity. Numerical simulations of the vaccination model show that such an imperfect anti-malaria vaccine (with a modest efficacy and coverage rate) can lead to effective disease control if the reproduction threshold (denoted by ℛvac) of the disease is reasonably small. On the other hand, the disease cannot be effectively controlled using such a vaccine if ℛvac is high. Finally, it is shown that the average number of days spent in the class of infectious individuals with higher level of gametocyte is critically important to the malaria burden in the community.  相似文献   

10.
A model is developed to describe the interaction between a predator and two prey types located in different regions. Conditions for stability and persistence are analysed. The effects of harvesting the predators are investigated by making the predator mortality rate habitat dependent. Results demonstrate that for any given set of parameter values there is a value of the intrinsic preference of the predator for each prey type at which the system undergoes a Hopf bifurcation. Above this critical value the system evolves towards a stable equilibrium, whereas below it, stable limit cycles arise by Hopf bifurcations. Simulations demonstrate that the presence of demographic stochasticity may destabilise oscillatory populations, thereby causing population extinctions. An application of the model to the foraging behaviour of North Sea cod is described. It is shown that if the preferred prey is more productive, it is likely that the equilibrium will be stable, whereas if the less preferred prey is more productive, populations are likely to display cycles and in the stochastic case become extinct. As cod fishing mortality is increased, the point of bifurcation and region of parameter space for which the system is unstable decreases. An increased understanding of how cod behave may enable fish stocks to be managed more successfully, for example by indicating where marine reserves should be placed.  相似文献   

11.
Terrestrial biosystems depend on macromolecules, and this feature is often considered as a likely universal aspect of life. While opinions differ regarding the importance of small-molecule systems in abiogenesis, escalating biological functional demands are linked with increasing complexity in key molecules participating in biosystem operations, and many such requirements cannot be efficiently mediated by relatively small compounds. It has long been recognized that known life is associated with the evolution of two distinct molecular alphabets (nucleic acid and protein), specific sequence combinations of which serve as informational and functional polymers. In contrast, much less detailed focus has been directed towards the potential universal need for molecular alphabets in constituting complex chemically-based life, and the implications of such a requirement. To analyze this, emphasis here is placed on the generalizable replicative and functional characteristics of molecular alphabets and their concatenates. A primary replicative alphabet based on the simplest possible molecular complementarity can potentially enable evolutionary processes to occur, including the encoding of secondarily functional alphabets. Very large uniquely specified (‘non-alphabetic’) molecules cannot feasibly underlie systems capable of the replicative and evolutionary properties which characterize complex biosystems. Transitions in the molecular evolution of alphabets can be related to progressive bridging of barriers which enable higher levels of biosystem organization. It is thus highly probable that molecular alphabets are an obligatory requirement for complex chemically-based life anywhere in the universe. In turn, reference to molecular alphabets should be usefully applied in current definitions of life.  相似文献   

12.
13.
Ongoing changes in attention and cognition depend upon cortical/subcortical interactions, which select sequences of different spatial patterns of activation in the cortex.It is proposed that each pattern of cortical activation permits evolution of electrocortical wave activity toward statistically stationary states, analogous to thermodynamic equilibrium. In each steady-state, neurons fire with an intrinsic Poisson spike probability and also with a bursting pattern related to network oscillations. Excitatory cell dendrites act as a regenerative reservoir in which pulse generation is balanced against dissipations.Equilibria exhibit contrasting limits. One limit, at high cortical activation, generates widespread zero-lag synchrony among excitatory cells, with partial suppression of noise. Excitatory and inhibitory cells approach zero-lag local correlation, with 1/4 cycle lag-correlation at greater distances of separation. The high-activation limit defines a correlated system of attractor basins, capable of co-ordinating synaptic modifications and intracortical signal generation. Suppression of noise would enhance convergence about attractor basins in the manner of simulated annealing, while, conversely, the persistence of some noise prevents network paralysis by phase locking. At the opposite limit—that of low activation—spikes and waves have low cross- and auto-correlation, but have wide-spectrum sensitivity to inputs. It is hypothesised that cortical regions, transiently at equilibrium near these extremes, engage in interaction with each other and with subcortical systems, to generate ongoing sequences of attention and cognition.This account is compatible with classical and recently observed experimental phenomena. The principle features inferred from a simplified linear mathematical account are reproduced in a more physiologically realistic and non-linear numerical simulation.  相似文献   

14.
Foot-and-mouth disease virus (FMDV) causes an economically important disease of cloven-hoofed livestock; of interest here is the difference in lytic behaviour that is observed in bovine epithelium. On the skin around the feet and tongue, the virus rapidly replicates, killing cells, and resulting in growing lesions, before eventually being cleared by the immune response. In contrast, there is usually minimal lysis in the soft palate, but virus may persist in tissue long after the animal has recovered from the disease. Persistence of virus has important implications for disease control, while identifying the determinant of lysis in epithelium is potentially important for the development of prophylactics. To help identify which of the differences between oral and pharyngeal epithelium are responsible for such dramatically divergent FMDV dynamics, a simple model has been developed, in which virus concentration is made explicit to allow the lytic behaviour of cells to be fully considered. Results suggest that localised structuring of what are fundamentally similar cells can induce a bifurcation in the behaviour of the system, explicitly whether infection can be sustained or results in mutual extinction, although parameter estimates indicate that more complex factors may be involved in maintaining viral persistence, or that there are as yet unquantified differences between the intrinsic properties of cells in these regions.  相似文献   

15.
16.
The paper presents a deterministic compartmental model for the transmission dynamics of swine influenza (H1N1) pandemic in a population in the presence of an imperfect vaccine and use of drug therapy for confirmed cases. Rigorous analysis of the model, which stratifies the infected population in terms of their risk of developing severe illness, reveals that it exhibits a vaccine-induced backward bifurcation when the associated reproduction number is less than unity. The epidemiological consequence of this result is that the effective control of H1N1, when the reproduction number is less than unity, in the population would then be dependent on the initial sizes of the subpopulations of the model. For the case where the vaccine is perfect, it is shown that having the reproduction number less than unity is necessary and sufficient for effective control of H1N1 in the population (in such a case, the associated disease-free equilibrium is globally asymptotically stable). The model has a unique endemic equilibrium when the reproduction number exceeds unity. Numerical simulations of the model, using data relevant to the province of Manitoba, Canada, show that it reasonably mimics the observed H1N1 pandemic data for Manitoba during the first (Spring) wave of the pandemic. Further, it is shown that the timely implementation of a mass vaccination program together with the size of the Manitoban population that have preexisting infection-acquired immunity (from the first wave) are crucial to the magnitude of the expected burden of disease associated with the second wave of the H1N1 pandemic. With an estimated vaccine efficacy of approximately 80%, it is projected that at least 60% of Manitobans need to be vaccinated in order for the effective control or elimination of the H1N1 pandemic in the province to be feasible. Finally, it is shown that the burden of the second wave of H1N1 is expected to be at least three times that of the first wave, and that the second wave would last until the end of January or early February, 2010.  相似文献   

17.
《Autophagy》2013,9(12):1553-1554
MicroRNAs (miRs) are increasingly important diagnostic and prognostic markers in cancer but have not been defined in medullary thyroid carcinoma (MTC). MiR microarray profiling was performed on 19 primary MTC tumors, validated with qPCR in 45 cases and correlated with clinical outcomes. MiRs-183 and 375 were overexpressed and miR-9* underexpressed in sporadic vs. hereditary MTC (SMTC; HMTC). MiR-183 and 375 overexpression predicted lateral nodal metastases, residual disease, distant metastases and mortality. MiR-183 knockdown in an MTC cell line (TT cells) reduced cellular proliferation in association with elevated LC3B expression. This is suggestive of increased autophagic flux and potential cell death via autophagy induction. MiRs may subsequently be shown to serve as efficacious therapeutic strategies in MTC with a mechanism based upon autophagy.  相似文献   

18.
Ongoing changes in attention and cognition depend upon cortical/subcortical interactions, which select sequences of different spatial patterns of activation in the cortex.  相似文献   

19.
Numerous biological interactions, such as interactions between T cell receptors or antibodies with antigens, interactions between enzymes and substrates, or interactions between predators and prey are often not strictly specific. In such less specific, or “sloppy,” systems, referred to here as degenerate systems, a given unit of a diverse resource (antigens, enzymatic substrates, prey) is at risk of being recognized and consumed by multiple consumers (lymphocytes, enzymes, predators). In this study, we model generalized degenerate consumer-resource systems of Lotka–Volterra and Verhulst types. In the degenerate systems of Lotka–Volterra, there is a continuum of types of consumer and resource based on variation of a single trait (characteristic, or preference). The consumers experience competition for a continuum of resource types. This non-local interaction system is modeled with partial differential-integral equations and shows spontaneous self-structuring of the consumer population that depends on the degree of interaction degeneracy between resource and consumer, but does not mirror the distribution of resource. We also show that the classical Verhulst (i.e. logistic) single population model can be generalized to a degenerate model, which shows qualitative behavior similar to that in the degenerate Lotka–Volterra model. These results provide better insight into the dynamics of selective systems in biology, suggesting that adaptation of degenerate repertoires is not a simple “mirroring” of the environment by the “fittest” elements of population.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号