首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 618 毫秒
1.
J A Fernandez-Pol 《Biochemistry》1981,20(13):3907-3912
Incubation of confluent nondividing NRK cells in serum-free media with unlabeled epidermal growth factor (EGF) leads to a reduction in the specific binding capacity for 125I-labeled EGF. This modulation of the binding capacity for 125I-labeled EGF by unlabeled EGF, termed receptor down regulation, was dependent on EGF concentration and time. Membranes from untreated NRK cells have a phosphorylating system which catalyzed in vitro the phosphorylation of numerous membrane components; this phosphorylating system was stimulated by EGF. Although EGF enhanced the phosphorylation of many membrane proteins, one major component with Mr 170K and a minor band of Mr 150K were primarily affected. A comparison of the membrane phosphoproteins of untreated and down-regulated cells by in vitro phosphorylation and NaDodSO4 gel electrophoresis revealed that down regulation of EGF receptors results in a specific decrease in 32P phosphorylation of the 170K- and 150K-dalton components to subsequent stimulation with EGF in vitro. We further characterized the modulation of phosphorylation of the 170K protein by down regulation with EGF and found it to be dependent on EGF concentration and time. These studies demonstrated a correlation between the loss of 125I-labeled EGF binding activity by the cells and the loss of the vitro EGF-dependent 32P phosphorylation of the 170K-dalton membrane protein. In addition, the results suggest that the major 170K Mr phosphoprotein band is a component of the receptor for EGF which is a substrate of the phosphorylation reaction.  相似文献   

2.
The cell membrane receptor for epidermal growth factor (EGF) appears to be a glycoprotein of Mr 170,000 and mediates the mitogenic and metabolic responses of cells with EGF receptors (EGF-R). Normal rat kidney (NRK) have about 3 X 10(5) EGF-R per cell. Upon transformation of NRK cells by Kirsten sarcoma virus, the transformed derivative (KNRK) loses the ability to bind 125I-EGF. Membranes from NRK and KNRK cells were included in EGF-dependent phosphorylation reactions to search for evidence of the EGF-R. A phosphorylated protein of Mr 170,000 was detected in both NRK and KNRK membranes. The Mr 170,000 protein was identified to be EGF-R by immunoprecipitation with monoclonal antibody to the receptor. Furthermore, two-dimensional peptide mapping using trypsin and chymotrypsin digestions of the iodinated receptors from both NRK and KNRK cells showed essentially identical patterns. These data indicate that the EGF-R is present in KNRK cells with apparently the same protein structure as the NRK counterpart.  相似文献   

3.
Rat cells transformed by Rous sarcoma virus and Fujinami sarcoma virus bound 5-10% of the amount of epidermal growth factor (EGF) bound by normal cells. Scatchard plot analysis indicated that the reduction in binding by transformed cells was due to a decreased number of receptors rather than to altered binding affinity. In experiments with temperature sensitive mutants of Rous sarcoma virus and Fujinami sarcoma virus significant loss of EGF binding occurred within one hour of shift from non-permissive to permissive temperature. Conditioned media from various normal and transformed cell lines were examined for the ability to inhibit EGF binding to normal cells or to cause "down regulation" of EGF receptors. No activity of either type was found. EGF-dependent phosphorylation in isolated membrane preparations was also examined. Membranes from normal cells displayed EGF-dependent phosphorylation of a Mr 180,000 protein presumed to be the EGF receptor. This activity was absent in membranes from transformed cells. The data suggest a close correlation between activation of avian sarcoma virus transforming gene products and modulation of the EGF growth regulatory system.  相似文献   

4.
Epidermal growth factor (EGF) and an EGF-like transforming growth factor (eTGF) from retrovirally transformed cells bind to a common receptor type in A431 cells. We have investigated the effects of the tumor promoter phorbol myristate acetate [PMA] on EGF/eTGF receptors in intact A431 cells. Treatment with PMA at 37 degrees C induces a complete loss of high-affinity (Kd = 35-50 pM) binding sites for eTGF and EGF on the cell surface of A431 cells. This effect is half-maximal at 0.1 nM PMA, exhibits rapid kinetics, and persists for at least 4 hr in the presence of PMA. eTGF and PMA added to intact A431 cells induce the phosphorylation of immunoprecipitable 170kd EGF/eTGF receptors. The EGF/eTGF receptor isolated from control cells was found to contain phosphoserine and phosphothreonine. PMA and eTGF caused a marked increase in the level of these two phosphoamino acids. In addition, eTGF but not PMA caused the appearance of phosphotyrosine in the EGF/eTGF receptor in vivo. We conclude that the tumor-promoting phorbol diester regulates both the affinity and phosphorylation state of the A431 cell receptor for the type alpha transforming growth factors, eTGF and EGF.  相似文献   

5.
Using acid-ethanol extraction, two proteins with Mr=8 and 12 kD were extracted from rat glioma tissue induced with ethylnitrosourea. These proteins were shown to complete for the receptor with [125I]EGF (epidermal growth factor) on A431 cells. The 8 kD protein exhibited a marked mitogenic effect by stimulating DNA synthesis in resting NIH 3T3 cells. Stepwise chromatography of the acid-ethanol extract on Biogels P-60 and P-10 resulted in preparative amounts of the protein and allowed for its partial characterization. It was found that the half-maximum stimulation of DNA synthesis in NIH 3T3 cells was achieved at growth factor protein concentration of 5 micrograms/ml. The preparation obtained possessed the EGF-competing activity of 10 ng-equiv. EGF per 1 microgram of protein and stimulated protein phosphorylation of the 170 kD protein in NRK cell membranes. The data obtained suggest that this factor may be related to the family of the so-called EGF-like growth factors.  相似文献   

6.
The intracellular distribution of proteasomes was studied using immunofluorescent method. In nonstimulated cells proteasomes were observed both in the cytoplasm and nuclei of A-431 cells. When 100 ng/ml EGF was added for 15 min, proteasomes were located mainly in the nuclei. Later (up to 1 h) proteasomes released from the nuclei and were observed mainly in the cytoplasm. Tyrphostin AG1478, an inhibitor of tyrosine kinase, and U73122, an inhibitor of phospholipase C, prevent, proteasome export from the nuclei after EGF treatment. In contrast, a proteasome inhibitor--lactacystin has no effect on this process. The EGF-dependent tyrosine phosphorylation of EGF receptor is blocked by tyrhostin AG1478 and U733122. Lactacystin did not alter the induction of EGF receptor tyrosine phosphorylation, triggered by EGF. It is concluded that intracellular distribution of proteasomes depends on tyrosine activity of EGF receptor.  相似文献   

7.
Anchorage-independent growth in soft agar of normal rat kidney (NRK) fibroblasts depends on both transforming growth factor-beta (TGF-beta) and epidermal growth factor (EGF) (or TGF-alpha). We have isolated two EGF-nonresponsive cell lines, N-3 and N-9, from chemically mutagenized NRK cells, after selection of mitogen-specific nonproliferative variants in the presence of EGF and colchicine. Saturation binding kinetics with 125I-EGF showed one-half or fewer EGF receptors in N-3 and N-9 than in their parental NRK. Cellular uptake of 2-deoxy-D-glucose was enhanced in all NRK, N-3, and N-9 cell lines by TGF-beta treatment, whereas treatment with EGF significantly enhanced the cellular uptake of the glucose analog in NRK cells, but not in N-3 and N-9 cells. DNA synthesis of NRK during the quiescent state, but not that of N-3 and N-9, was stimulated by EGF. Anchorage-independent growth of N-9 could not be observed even in the presence of both EGF and TGF-beta, whereas that of N-3 was significantly enhanced by TGF-beta alone. EGF stimulated phosphorylation of a membrane protein with molecular size 170 kDa of NRK, but not of N-3, when immunoprecipitates reacting with anti-phosphotyrosine antibody were analyzed. Exposure of NRK cells to EGF increased cellular levels of TGF-beta mRNA, but there appeared little expression of TGF-beta mRNA in N-3 and N-9 cells. Exposure of N-3 cells to EGF or TGF-beta enhanced the secretion of EGF into culture medium, but exposure of NRK or N-9 cells did not. Altered response to EGF of N-3 or N-9 might be related to their aberrant growth behaviors.  相似文献   

8.
The normal human breast epithelial cell line, MCF10A, was used to investigate the mechanism by which high-density inhibits EGF-dependent cell cycle progression. EGF-dependent Akt activation was found to be transient in high-density cells and sustained in low-density cells. High-density cells also showed decreased EGF receptor (EGFR) autophosphorylation, decreased retinoblastoma protein phosphorylation, and increased p27 protein expression. Although EGFR activation was decreased in the high-density cells, the activation was sufficient to stimulate EGFR substrates comparable to low-density cells. EGF-dependent activation of the Erk1/2 pathway and the upstream activators of Akt (Gab1, erbB3, PI3 kinase, and PDK1) showed no density dependency. Antagonists of Akt activity provided further evidence that regulation of Akt activation is the critical signal transduction step controlling EGF-dependent cell cycle progression. Both adenovirus-mediated expression of dominant-negative Akt and inhibition of PI3 kinase-mediated Akt activation with LY294002 blocked cell cycle progression of low-density cells. In summary, we report the novel finding that high-density blocks EGF-dependent cell cycle progression by inhibiting EGF signaling at the level of EGF-dependent Akt activation rather than at the level of EGFR activation.  相似文献   

9.
Human squamous cell carcinoma cells (NA cells) possess a large number of epidermal growth factor (EGF) receptors and their growth is inhibited by EGF. Recently, we isolated a series of variants which escaped EGF-mediated growth inhibition. The variant ER11 cells expressed a decreased level of EGF receptors and grew in an EGF-dependent fashion. Treatment of ER11 cells with EGF resulted in the activation of protein kinase C, which was followed by the enhancement of 80-kDa protein phosphorylation as observed in NA cells. Thus, EGF can activate not only tyrosine kinase but also protein kinase C in both NA and ER11 cells. The EGF-dependent growth stimulation in ER11 cells was inhibited by 12-O-tetradecanoylphorbol 13-acetate (TPA). Exposure of NA and ER11 cells to TPA for 30 h resulted in the down-regulation of protein kinase C. In these protein kinase C-deficient cells, EGF was able to activate autophosphorylation of the EGF receptor. The EGF-activated EGF receptor kinase phosphorylated numerous cellular proteins even in the protein kinase C-deficient cells. However, there were less tyrosine-phosphorylated proteins in ER11 cells than in NA cells. These results suggested that protein kinase C is necessary for the EGF-dependent growth stimulation of ER11 cells and that several tyrosine-phosphorylated proteins commonly observed in both NA and ER11 cells seem essential for cell proliferation.  相似文献   

10.
Normal rat kidney (NRK) fibroblasts are immortalized cells that are strictly dependent on externally added growth factors for proliferation. When cultured in the presence of epidermal growth factor (EGF) as the only growth stimulating hormone, these cells have a normal phenotype and undergo density-dependent growth inhibition. It has been postulated that this density-arrest results from a decrease of EGF receptor levels below a threshold level which makes these cells unresponsive to stimulation by EGF. In the present study, we show that NRK cells, made quiescent by serum-deprivation at submaximum density, are mitogenically still responsive to EGF, but show enhanced mitogenic stimulation after 8 hr pre-treatment with either transforming growth factor β (TGFβ) or retinoic acid (RA), while prostaglandin F (PGF) and bradykinin (BK) enhance the mitogenic stimulation by EGF only slightly under these conditions. Addition of TGFβ or RA results in an increase of both 125I-EGF-binding capacity and EGF receptor mRNA levels. Using flow cytometric analysis, we show that pre-treatment with TGFβ or RA increases the percentage of cells entering the cell cycle as a function of time. Furthermore, pre-treatment of the cells with TGFβ or RA increases the rate of mitogen-activated protein kinase (MAPK) phosphorylation by EGF. PGF and BK also increase EGF receptor levels, but only with delayed kinetics. These results show that already in serum-deprived quiescent NRK cells, EGF receptor levels limit EGF-induced mitogenic stimulation. This observation provides further evidence for the regulating role of the EGF receptor in density-dependent growth control of NRK cells. J. Cell. Physiol. 174:9–17, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

11.
We have investigated the epidermal growth factor (EGF)-stimulated tyrosine-specific protein kinase activity in quiescent cultures of diploid human fibroblasts that have a well characterized mitogenic response to EGF. We developed a method of permeabilizing cells with digitonin or other agents that permitted the rapid labeling of cellular proteins with exogenously added [gamma-32P]ATP while allowing only about 25% of marker cytosolic enzymes to escape from the cells. When phosphatases were inhibited with zinc and vanadate, EGF induced up to 8-fold stimulation of the incorporation of radioactivity from [gamma-32P]ATP into a 35-kDa band on sodium dodecyl sulfate gels. Alkali treatment of gels showed that EGF stimulated the phosphorylation of bands with apparent molecular masses of 170, 45, 35, 26, 22, and 21 kDa. Phosphoamino acid analysis was performed on the 170- and 35-kDa bands and revealed that the EGF-stimulated phosphorylation was on tyrosyl residues. The 35-kDa band was resolved into four spots by two-dimensional gel electrophoresis. The most acidic form was the most prominent and it was precipitated by an antiserum against a 35-kDa protein from A-431 cells; heretofore, this protein has only been reported to be phosphorylated in an EGF-dependent manner by A-431 membranes in vitro (Fava, R. A., and Cohen, S. (1984) J. Biol. Chem. 259, 2636-2645). This antiserum also precipitated a 35-kDa phospho-protein from extracts of intact [32P]orthophosphate-labeled fibroblasts which was phosphorylated on tyrosine in an EGF-dependent manner. None of the forms of the 35-kDa phosphoproteins labeled in permeabilized cells were immunologically related to the 34-kDa protein that is a substrate for the tyrosyl kinase encoded by Rous sarcoma virus. Other mitogens (serum, insulin, platelet-derived growth factor, and thrombin) did not detectably stimulate phosphorylation in permeabilized cells.  相似文献   

12.
Abstract: The phosphorylation of surface proteins by ectoprotein kinase has been proposed to play a role in mechanisms underlying neuronal differentiation and their responsiveness to nerve growth factor (NGF). PC 12 clones represent an optimal model for investigating the mode of action of NGF in a homogeneous cell population. In the present study we obtained evidence that PC12 cells possess ectoprotein kinase and characterized the endogenous phosphorylation of its surface protein substrates. PC12 cells maintained in a chemically defined medium exhibited phosphorylation of proteins by [γ-32P]ATP added to the medium at time points preceding the intracellular phosphorylation of proteins in cells labeled with 32Pi. This activity was abolished by adding apyrase or trypsin to the medium but was not sensitive to addition of an excess of unlabeled Pi. As also expected from ecto-protein kinase activity, PC12 cells catalyzed the phosphorylation of an exogenous protein substrate added to the medium, dephospho-α-casein, and this activity competed with the endogenous phosphorylation for extracellular ATP. Based on these criteria, three protein components migrating in sodium dodecyl sulfate gels with apparent molecular weights of 105K, 39K, and 20K were identified as exclusive substrates of ecto-protein kinase in PC12 cells. Of the phosphate incorporated into these proteins from extracellular ATP, 75–87% was found in phosphothreonine. The phosphorylation of the 39K protein by ecto-protein kinase did not require Mg2+, implicating this activity in the previously demonstrated regulation of Ca2+-dependent, high-affinity norepinephrine uptake in PC12 cells by extracellular ATP. The protein kinase inhibitor K-252a inhibited both intra- and extracellular protein phosphorylation in intact PC12 cells. Its hydrophilic analogue K-252b, had only minimal effects on intracellular protein phosphorylation but readily inhibited the phosphorylation of specific substrates of ecto-protein kinase in PC12 cells incubated with extracellular ATP, suggesting the involvement of ecto-protein kinase in the reported inhibition of NGF-induced neurite extension by K-252b. Preincubation of PC12 cells with 50 ng/ml of NGF for 5 min stimulated the activity of ecto-protein kinase toward all its endogenous substrates. Exposure of PC12 cells to the same NGF concentration for 3 days revealed another substrate of ecto-protein kinase, a 53K protein, whose surface phosphorylation is expressed only after NGF-induced neuronal differentiation. In the concentration range (10–100 μM) at which 6-thioguanine blocked NGF-promoted neurite outgrowth in PC12 cells, 6-thioguanine effectively inhibited the phosphorylation of specific proteins by ecto-protein kinase. This study provides the basis for continued investigation of the involvement of ecto-protein kinase and its surface protein substrates in neuronal differentiation, neuritogenesis, and synaptogenesis.  相似文献   

13.
Epidermal growth factor (EGF) treatment of cells expressing the human EGF receptor (EGFr) results in rapid tyrosine phosphorylation of several cellular proteins including mitogen-activated protein (MAP) kinase. EGF treatment of cells expressing a tyrosine kinase-inactive EGFr failed to induce the tyrosine phosphorylation of endogenous substrates in response to EGF; however, the tyrosine phosphorylation and activation of MAP kinase did occur. This observation indicates that MAP kinase is activated in response to a signal other than the tyrosine kinase activity of the EGFr. Because EGF does not stimulate cells expressing the inactive EGFr to proliferate, phosphorylation of MAP kinase may not be sufficient for the EGF-dependent mitogenesis.  相似文献   

14.
The most popular object for studying endocytosis of EGF-receptor complexes, human epidermoid carcinoma A431, was shown to answer to EGF in high concentration (100 ng/ml) by growth inhibition, being indifferent to lower (0.1-1 ng/ml) concentrations. At the same time, cells NIH 3T3, expressing human EGF receptor (HER14), and epithelial mammary cells HC11 increased 14C-thymidine incorporation into DNA after EGF addition. However, for HER14 cells stimulatory effect of EGF was twice weaker than that induced by serum, whereas the effect of EGF on 14C-thymidine incorporation in DNA of cells HC11 was approximately 5 times stronger compared to serum. Therefore, cells HC11 may be referred to as EGF-dependent. Cell cycle analysis by fluorimetry showed that more than 90% of serum-starved HER14 and HC11 were in G0/G1. Within 19-20 h after stimulation by EGF 70-90% of HC11 cells and only 30-40% of HER14 cells were in S-phase. EGF removing from culture medium earlier than 9-11 h after stimulation blocked entering of HC11 cells into S-phase, whereas such EGF-dependent period was not found for cells HER14. Thus, synchronization of progression through early stages of cell cycle, stimulated by EGF and the presence of well defined "early" (EGF-dependent) and "late" (EGF-independent) phases, make cells HC11 convenient object for studying physiological role of EGF receptor complexes endocytosis.  相似文献   

15.
The epidermal growth factor (EGF) receptor mediates the induction of a transformed phenotype in normal rat kidney (NRK) cells by transforming growth factors (TGFs). The ability of EGF and its analogue TGF-alpha to induce the transformed phenotype in NRK cells is greatly potentiated by TGF-beta, a polypeptide that does not interact directly with binding sites for EGF or TGF-alpha. Our evidence indicates that TGF-beta purified from retrovirally transformed rat embryo cells and human platelets induces a rapid (t 1/2 = 0.3 h) decrease in the binding of EGF and TGF-alpha to high-affinity cell surface receptors in NRK cells. No change due to TGF-beta was observed in the binding of EGF or TGF-alpha to lower affinity sites also present in NRK cells. The effect of TGF-beta on EGF/TGF-alpha receptors was observed at concentrations (0.5-20 pM) similar to those at which TGF-beta is active in promoting proliferation of NRK cells in monolayer culture and semisolid medium. Affinity labeling of NRK cells and membranes by cross-linking with receptor-bound 125I-TGF-alpha and 125I-EGF indicated that both factors interact with a common 170-kD receptor structure. Treatment of cells with TGF-beta decreased the intensity of affinity-labeling of this receptor structure. These data suggest that the 170 kD high-affinity receptors for EGF and TGF-alpha in NRK cells are a target for rapid modulation by TGF-beta.  相似文献   

16.
We examined the effects of newly exploited amiloride analogs on protein phosphorylation and serotonin secretion induced by various agonists in human platelets. 3', 4'-dichlorobenzamil (DCB) and to a lesser extent, 2', 4'-dimethylbenzamil (DMB), which in many cells highly specific inhibitors of Na+/Ca2+-pump, inhibited the phosphorylation of 47K- and 20K-dalton proteins and serotonin secretion in human platelets independently of the action on the pump. DCB also induced dephosphorylation of 47K and 20K after the phosphorylation of these proteins by thrombin and released serotonin by itself.  相似文献   

17.
Alterations in tubulin immunoreactivity; relation to secondary structure   总被引:2,自引:0,他引:2  
Blood sinusoidal plasma membrane subfractions were isolated from normal mouse liver in the presence of the proteinase inhibitors PhMeSO2F and iodoacetamide. They were purified from smooth microsomal and Golgi vesicle contaminants. The phosphorylation reaction was studied at 33 degrees C, in the presence of 2 mM MnCl2. Addition of epidermal growth factor (EGF) to the preparations stimulated 32P incorporation from [gamma-32P]ATP or [gamma-32P]GTP essentially into one 170 000 Mr protein. Some incorporation was observed in a minor 120 000-Mr component which appears to be a degradation product of the 170 000-Mr component. No EGF-dependent phosphorylation of other membrane proteins or various exogenous proteins could be detected in vitro. The dephosphorylation of the 170 000-Mr component was observed after 4 min of incubation at 33 degrees C. This dephosphorylation reaction was inhibited by addition of 5 mM p-nitrophenyl phosphate but not by addition of micromolar Zn2+, Be2+ or orthovanadate. The 170 000-Mr protein specifically bound 125I-labeled EGF and thus appeared to be the hepatic EGF receptor. The EGF stimulatable kinase activity considerably enhances incorporation of 32P into tyrosine residues of the 170 000-Mr EGF receptor at 33 degrees C. Tryptic peptide maps of the 32P-labeled 170 000-Mr protein revealed a multiplicity of phosphorylated sites. Seven 32P-labeled phosphopeptides were observed after EGF stimulation, three of them being largely prominent. Tryptic peptide maps of the 170 000-Mr protein after it was covalently linked to 125I-labeled EGF showed only one 125I-labeled peptide, the migration of which appeared different from that of 32P-labeled phosphopeptides. These findings were confirmed by V8 protease unidimensional peptide mapping of the 170 000-Mr protein, labeled with 32P or 125I-EGF.  相似文献   

18.
Platelet-derived growth factor (PDGF) induces the time and dose dependent serine/threonine phosphorylation of pp64, a nuclear protein in normal rat kidney (NRK) cells. pp64 is phosphorylated additionally on tyrosine in SSV-transformed NRK cells. To further characterize the regulation of phosphorylation of pp64, other mitogens and inhibitors were studied. 12-O-tetradecanoylphorbol-13-acetate (TPA) but not epidermal growth factor (EGF) or insulin induced the phosphorylation of nuclear pp64. Addition of the inhibitor H7 to TPA-treated NRK cells resulted in a striking further increase in phosphorylation of pp64 and, to a lesser extent, in NRK cells treated with PDGF and H7. When cells were treated with PDGF and H7, pp64 was recognized by anti-phosphotyrosine antisera. The increased phosphorylation induced by H7 was inhibited when forskolin was included. This loss of phosphorylation in pp64 with forskolin treatment paralleled a loss of immunoreactivity of pp64 to anti-phosphosphotyrosine. Complex and independent pathways thus appear to signal the growth factor dependent nuclear phosphorylation of pp64, involving phosphorylations both on serine/threonine and on tyrosine.  相似文献   

19.
Glycosphingolipids added exogenously to 3T3 cells in culture were shown to inhibit cell growth, alter the membrane affinity to platelet-derived growth factor binding, and reduce platelet-derived growth factor-stimulated membrane phosphorylation (Bremer, E., Hakomori, S., Bowen-Pope, D. F., Raines, E., and Ross, R. (1984) J. Biol. Chem. 259, 6818-6825). This approach has been extended to the epidermal growth factor (EGF) receptor of human epidermoid carcinoma cell lines KB and A431. GM3 and GM1 gangliosides inhibited both KB cell and A431 cell growth, although GM3 was a much stronger inhibitor of both KB and A431 cell growth. Neither GM3 nor GM1 had any affect on the binding of 125I-EGF to its cell surface receptor. However, GM3 and, to a much lower extent, GM1 were capable of inhibiting EGF-stimulated phosphorylation of the EGF receptor in membrane preparations of both KB and A431 cells. Further characterization of GM3-sensitive receptor phosphorylation was performed in A431 cells, which had a higher content of the EGF receptor. The following results were of particular interest. (i) EGF-dependent tyrosine phosphorylation of the EGF receptor and its inhibition by GM3 were also demonstrated on isolated EGF receptor after adsorption on the anti-receptor antibody-Sepharose complex, and the receptor phosphorylation was enhanced on addition of phosphatidylethanolamine. (ii) Phosphoamino acid analysis of the EGF receptor indicated that the reduction of phosphorylation induced by GM3 was entirely in the phosphotyrosine and not in the phosphoserine nor phosphothreonine content. (iii) The inhibitory effect of GM3 on EGF-dependent receptor phosphorylation could be reproduced in membranes isolated from A431 cells that had been cultured in medium containing 50 nmol/ml GM3 to effect cell growth inhibition. The membrane fraction isolated from such growth-arrested cells was found to be less responsive to EGF-stimulated receptor phosphorylation. These results suggest that membrane lipids, especially GM3, can modulate EGF receptor phosphorylation in vitro as well as in situ.  相似文献   

20.
Qualitative differences in the content of tyrosine-phosphorylated proteins in normal and transformed hepatocytes have been found using the method of two-dimensional electrophoresis. Epidermal growth factor (EGF) has induced quantitative changes in the spectra of phosphotyrosine-containing proteins in normal cells and qualitative changes in the transformed ones. Results of immunoprecipitation with antibodies against phosphotyrosine permit revealing a protein with Mm 50 kDa which is subjected to EGF-dependent tyrosine-phosphorylation in normal hepatocytes. The intensity of protein phosphorylation is 10 times higher in the transformed cells but the dependence of this process on the EGF is not exhibited. The role of protein-tyrosine-kinases in the transmission of a mitogenic signal and in liver carcinogenesis is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号