首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fuzzy J-Means and VNS methods for clustering genes from microarray data   总被引:4,自引:0,他引:4  
MOTIVATION: In the interpretation of gene expression data from a group of microarray experiments that include samples from either different patients or conditions, special consideration must be given to the pleiotropic and epistatic roles of genes, as observed in the variation of gene coexpression patterns. Crisp clustering methods assign each gene to one cluster, thereby omitting information about the multiple roles of genes. RESULTS: Here, we present the application of a local search heuristic, Fuzzy J-Means, embedded into the variable neighborhood search metaheuristic for the clustering of microarray gene expression data. We show that for all the datasets studied this algorithm outperforms the standard Fuzzy C-Means heuristic. Different methods for the utilization of cluster membership information in determining gene coregulation are presented. The clustering and data analyses were performed on simulated datasets as well as experimental cDNA microarray data for breast cancer and human blood from the Stanford Microarray Database. AVAILABILITY: The source code of the clustering software (C programming language) is freely available from Nabil.Belacel@nrc-cnrc.gc.ca  相似文献   

2.
SUMMARY: In this paper we present a data mining system, which allows the application of different clustering and cluster validity algorithms for DNA microarray data. This tool may improve the quality of the data analysis results, and may support the prediction of the number of relevant clusters in the microarray datasets. This systematic evaluation approach may significantly aid genome expression analyses for knowledge discovery applications. The developed software system may be effectively used for clustering and validating not only DNA microarray expression analysis applications but also other biomedical and physical data with no limitations. AVAILABILITY: The program is freely available for non-profit use on request at http://www.cs.tcd.ie/Nadia.Bolshakova/Machaon.html CONTACT: Nadia.Bolshakova@cs.tcd.ie.  相似文献   

3.
4.
5.
MOTIVATION: DNA microarray data analysis has been used previously to identify marker genes which discriminate cancer from normal samples. However, due to the limited sample size of each study, there are few common markers among different studies of the same cancer. With the rapid accumulation of microarray data, it is of great interest to integrate inter-study microarray data to increase sample size, which could lead to the discovery of more reliable markers. RESULTS: We present a novel, simple method of integrating different microarray datasets to identify marker genes and apply the method to prostate cancer datasets. In this study, by applying a new statistical method, referred to as the top-scoring pair (TSP) classifier, we have identified a pair of robust marker genes (HPN and STAT6) by integrating microarray datasets from three different prostate cancer studies. Cross-platform validation shows that the TSP classifier built from the marker gene pair, which simply compares relative expression values, achieves high accuracy, sensitivity and specificity on independent datasets generated using various array platforms. Our findings suggest a new model for the discovery of marker genes from accumulated microarray data and demonstrate how the great wealth of microarray data can be exploited to increase the power of statistical analysis. CONTACT: leixu@jhu.edu.  相似文献   

6.
MOTIVATION: DNA microarray experiments generating thousands of gene expression measurements, are being used to gather information from tissue and cell samples regarding gene expression differences that will be useful in diagnosing disease. We have developed a new method to analyse this kind of data using support vector machines (SVMs). This analysis consists of both classification of the tissue samples, and an exploration of the data for mis-labeled or questionable tissue results. RESULTS: We demonstrate the method in detail on samples consisting of ovarian cancer tissues, normal ovarian tissues, and other normal tissues. The dataset consists of expression experiment results for 97,802 cDNAs for each tissue. As a result of computational analysis, a tissue sample is discovered and confirmed to be wrongly labeled. Upon correction of this mistake and the removal of an outlier, perfect classification of tissues is achieved, but not with high confidence. We identify and analyse a subset of genes from the ovarian dataset whose expression is highly differentiated between the types of tissues. To show robustness of the SVM method, two previously published datasets from other types of tissues or cells are analysed. The results are comparable to those previously obtained. We show that other machine learning methods also perform comparably to the SVM on many of those datasets. AVAILABILITY: The SVM software is available at http://www.cs. columbia.edu/ approximately bgrundy/svm.  相似文献   

7.
8.
MOTIVATION: Accurate time series for biological processes are difficult to estimate due to problems of synchronization, temporal sampling and rate heterogeneity. Methods are needed that can utilize multi-dimensional data, such as those resulting from DNA microarray experiments, in order to reconstruct time series from unordered or poorly ordered sets of observations. RESULTS: We present a set of algorithms for estimating temporal orderings from unordered sets of sample elements. The techniques we describe are based on modifications of a minimum-spanning tree calculated from a weighted, undirected graph. We demonstrate the efficacy of our approach by applying these techniques to an artificial data set as well as several gene expression data sets derived from DNA microarray experiments. In addition to estimating orderings, the techniques we describe also provide useful heuristics for assessing relevant properties of sample datasets such as noise and sampling intensity, and we show how a data structure called a PQ-tree can be used to represent uncertainty in a reconstructed ordering. AVAILABILITY: Academic implementations of the ordering algorithms are available as source code (in the programming language Python) on our web site, along with documentation on their use. The artificial 'jelly roll' data set upon which the algorithm was tested is also available from this web site. The publicly available gene expression data may be found at http://genome-www.stanford.edu/cellcycle/ and http://caulobacter.stanford.edu/CellCycle/.  相似文献   

9.
MArray is a Matlab toolbox with a graphical user interface that allows the user to analyse single or paired microarray datasets by direct input of the raw data output file from image analysis packages, such as QuantArray or GenePiX. The application provides simple procedures to manually evaluate the quality of each measurement, multiple approaches to both ratio normalization (simple normalization, intensity dependent normalization) and evaluation of the reproducibility of paired experiments (using the techniques 'simple statistical method' and 'quality control ellipse' and 'significance analysis of microarrays'). Specifically, interactive spot evaluation functions are available in MArray and an online gene information database (NCBI UniGene) is linked. The application may provide a valuable aid in selecting and optimizing experimental procedures, as well as serving as an analytical tool for two-state biological comparisons, such as a study of single-dose activation. It is entirely platform independent, and only requires Matlab installed. AVAILABILITY: http://matrise.uio.no/marray/marray.html  相似文献   

10.
Sungear is a software system that supports a rapid, visually interactive and biologist-driven comparison of large datasets. The datasets can come from microarray experiments (e.g. genes induced in each experiment), from comparative genomics (e.g. genes present in each genome) or even from non-biological applications (e.g. demographics or baseball statistics). Sungear represents multiple datasets as vertices in a polygon. Each possible intersection among the sets is represented as a circle inside the polygon. The position of the circle is determined by the position of the vertices represented in the intersection and the area of the circle is determined by the number of elements in the intersection. Sungear shows which Gene Ontology terms are over-represented in a subset of circles or anchors. The intuitive Sungear interface has enabled biologists to determine quickly which dataset or groups of datasets play a role in a biological function of interest. AVAILABILITY: A live online version of Sungear can be found at http://virtualplant-prod.bio.nyu.edu/cgi-bin/sungear/index.cgi  相似文献   

11.
MOTIVATION: Clustering techniques such as k-means and hierarchical clustering are commonly used to analyze DNA microarray derived gene expression data. However, the interactions between processes underlying the cell activity suggest that the complexity of the microarray data structure may not be fully represented with discrete clustering methods. RESULTS: A newly developed software tool called MILVA (microarray latent visualization and analysis) is presented here to investigate microarray data without separating gene expression profiles into discrete classes. The underpinning of the MILVA software is the two-dimensional topographic representation of multidimensional microarray data. On this basis, the interactive MILVA functions allow a continuous exploration of microarray data driven by the direct supervision of the biologist in detecting activity patterns of co-regulated genes. AVAILABILITY: The MILVA software is freely available. The software and the related documentation can be downloaded from http://www.ncrg.aston.ac.uk/Projects/milva. User 'surrey' as username and '3245' as password to login. The software is currently available for Windows platform only.  相似文献   

12.
SurvJamda (Survival prediction by joint analysis of microarray data) is an R package that utilizes joint analysis of microarray gene expression data to predict patients' survival and risk assessment. Joint analysis can be performed by merging datasets or meta-analysis to increase the sample size and to improve survival prognosis. The prognosis performance derived from the combined datasets can be assessed to determine which feature selection approach, joint analysis method and bias estimation provide the most robust prognosis for a given set of datasets. AVAILABILITY: The survJamda package is available at the Comprehensive R Archive Network, http://cran.r-project.org. CONTACT: hyasrebi@yahoo.com.  相似文献   

13.
TimeView     
TimeView is a MATLAB program that compares multiple temporal datasets from microarray experiments under two or more conditions, for example, temporal variation of cellular response upon exposure to different drugs. The current paucity of programs designed to efficiently compare and visualise gene expression profiles in such datasets led us to design TimeView, which also enhances data visualisation by plotting the expression profiles of a large number of genes on a single screen. AVAILABILITY: TimeView is available free of charge to all users at http://hugroup.cems.umn.edu/Research/Genomics/Timeview/timeview.htm. To use TimeView, users will require access to the commercial software MATLAB (version 6.5). A help document is available on the TimeView website.  相似文献   

14.
SUMMARY: We have created a software tool, SNPTools, for analysis and visualization of microarray data, mainly SNP array data. The software can analyse and find differences in intensity levels between groups of arrays and identify segments of SNPs (genes, clones), where the intensity levels differ significantly between the groups. In addition, SNPTools can show jointly loss-of-heterozygosity (LOH) data (derived from genotypes) and intensity data for paired samples of tumour and normal arrays. The output graphs can be manipulated in various ways to modify and adjust the layout. A wizard allows options and parameters to be changed easily and graphs replotted. All output can be saved in various formats, and also re-opened in SNPTools for further analysis. For explorative use, SNPTools allows various genome information to be loaded onto the graphs. AVAILABILITY: The software, example data sets and tutorials are freely available from http://www.birc.au.dk/snptools  相似文献   

15.
The large variety of clustering algorithms and their variants can be daunting to researchers wishing to explore patterns within their microarray datasets. Furthermore, each clustering method has distinct biases in finding patterns within the data, and clusterings may not be reproducible across different algorithms. A consensus approach utilizing multiple algorithms can show where the various methods agree and expose robust patterns within the data. In this paper, we present a software package - Consense, written for R/Bioconductor - that utilizes such an approach to explore microarray datasets. Consense produces clustering results for each of the clustering methods and produces a report of metrics comparing the individual clusterings. A feature of Consense is identification of genes that cluster consistently with an index gene across methods. Utilizing simulated microarray data, sensitivity of the metrics to the biases of the different clustering algorithms is explored. The framework is easily extensible, allowing this tool to be used by other functional genomic data types, as well as other high-throughput OMICS data types generated from metabolomic and proteomic experiments. It also provides a flexible environment to benchmark new clustering algorithms. Consense is currently available as an installable R/Bioconductor package (http://www.ohsucancer.com/isrdev/consense/).  相似文献   

16.
MOTIVATION: The rapid accumulation of microarray datasets provides unique opportunities to perform systematic functional characterization of the human genome. We designed a graph-based approach to integrate cross-platform microarray data, and extract recurrent expression patterns. A series of microarray datasets can be modeled as a series of co-expression networks, in which we search for frequently occurring network patterns. The integrative approach provides three major advantages over the commonly used microarray analysis methods: (1) enhance signal to noise separation (2) identify functionally related genes without co-expression and (3) provide a way to predict gene functions in a context-specific way. RESULTS: We integrate 65 human microarray datasets, comprising 1105 experiments and over 11 million expression measurements. We develop a data mining procedure based on frequent itemset mining and biclustering to systematically discover network patterns that recur in at least five datasets. This resulted in 143,401 potential functional modules. Subsequently, we design a network topology statistic based on graph random walk that effectively captures characteristics of a gene's local functional environment. Function annotations based on this statistic are then subject to the assessment using the random forest method, combining six other attributes of the network modules. We assign 1126 functions to 895 genes, 779 known and 116 unknown, with a validation accuracy of 70%. Among our assignments, 20% genes are assigned with multiple functions based on different network environments. AVAILABILITY: http://zhoulab.usc.edu/ContextAnnotation.  相似文献   

17.
18.
19.
limma is an R/Bioconductor software package that provides an integrated solution for analysing data from gene expression experiments. It contains rich features for handling complex experimental designs and for information borrowing to overcome the problem of small sample sizes. Over the past decade, limma has been a popular choice for gene discovery through differential expression analyses of microarray and high-throughput PCR data. The package contains particularly strong facilities for reading, normalizing and exploring such data. Recently, the capabilities of limma have been significantly expanded in two important directions. First, the package can now perform both differential expression and differential splicing analyses of RNA sequencing (RNA-seq) data. All the downstream analysis tools previously restricted to microarray data are now available for RNA-seq as well. These capabilities allow users to analyse both RNA-seq and microarray data with very similar pipelines. Second, the package is now able to go past the traditional gene-wise expression analyses in a variety of ways, analysing expression profiles in terms of co-regulated sets of genes or in terms of higher-order expression signatures. This provides enhanced possibilities for biological interpretation of gene expression differences. This article reviews the philosophy and design of the limma package, summarizing both new and historical features, with an emphasis on recent enhancements and features that have not been previously described.  相似文献   

20.
MOTIVATION: Recent studies have shown that microarray gene expression data are useful for phenotype classification of many diseases. A major problem in this classification is that the number of features (genes) greatly exceeds the number of instances (tissue samples). It has been shown that selecting a small set of informative genes can lead to improved classification accuracy. Many approaches have been proposed for this gene selection problem. Most of the previous gene ranking methods typically select 50-200 top-ranked genes and these genes are often highly correlated. Our goal is to select a small set of non-redundant marker genes that are most relevant for the classification task. RESULTS: To achieve this goal, we developed a novel hybrid approach that combines gene ranking and clustering analysis. In this approach, we first applied feature filtering algorithms to select a set of top-ranked genes, and then applied hierarchical clustering on these genes to generate a dendrogram. Finally, the dendrogram was analyzed by a sweep-line algorithm and marker genes are selected by collapsing dense clusters. Empirical study using three public datasets shows that our approach is capable of selecting relatively few marker genes while offering the same or better leave-one-out cross-validation accuracy compared with approaches that use top-ranked genes directly for classification. AVAILABILITY: The HykGene software is freely available at http://www.cs.dartmouth.edu/~wyh/software.htm CONTACT: wyh@cs.dartmouth.edu SUPPLEMENTARY INFORMATION: Supplementary material is available from http://www.cs.dartmouth.edu/~wyh/hykgene/supplement/index.htm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号