首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low-molecular-weight chitosans with a viscosity-average molecular weight (Mv) of 5 to 27 kDa and equal degree of deacetylation (DD, 85%) were highly active against Pseudomonas aureofaciens, Enterobacter agglomerans, Bacillus subtilis, and Bifidobacterium bifidum 791, causing death of 80 to 100% of cells. An exception to this tendency was Escherichia coli, for which the rate of cell death, induced by the 5-kDa chitosan, was 38%. The antibacterial effect was manifested as early as 10 min after incubation of 12-kDa chitosan with B. subtilis or E. coli cells. Candida krusei was almost insensitive to the above crab chitosans. However, Candida krusei was highly sensitive to chitosans with Mv 5, 6, 12, 15.7, and 27 kDa: the minimum inhibitory concentration (MIC) varied from 0.06 to 0.005%. Chitosans with M, 5, 12, and 15.7 kDa exerted an antibacterial effect on Staphylococcus aureus. Chitosans with Mv 5, 15.7, and 27 kDa had no effect on Bifidobacterium bifidum ATCC 14893. The antibacterial effect of the 4-kDa chitosan on E. coli and B. bifidum 791 increased with DD in the range 55-85%.  相似文献   

2.
家蝇幼虫壳聚糖的抑菌活性及影响因子   总被引:2,自引:0,他引:2  
为研究昆虫壳聚糖的抑菌活性及影响因子, 由家蝇Musca domestica幼虫制备了10个不同分子量的壳聚糖,在不同条件下分别对6种细菌作抑菌实验, 并通过测定细菌细胞膜和细胞壁的透性初步探讨了壳聚糖的抑菌机理。结果表明,分子量在21~251 kD的壳聚糖有很强的抑菌活性,抑菌活性呈现随pH的降低而增加的趋势,pH 5.5时最低抑菌浓度在0.03%~0.06%之间,Ca2+和Mg2+能够显著降低壳聚糖的抑菌作用。通过对实验结果的方差分析表明,壳聚糖的不同分子量、pH值和金属离子等外界因素都是壳聚糖抑菌活性的极显著影响因素,而菌株本身也是极显著影响因素之一。壳聚糖能够增加细胞膜通透性,造成细胞内容物的外泄。  相似文献   

3.
Degradation of chitosan by H(2)O(2) under microwave irradiation was investigated. The oxidative degradation of chitosan was highly accelerated by microwave irradiation under the condition of low temperature and low concentration of H(2)O(2). The degraded chitosans with low molecular weight (M(w)) were characterized by gel permeation chromatography, Fourier-transform infrared spectroscopy, ultraviolet-visible spectroscopy, X-ray diffraction and elemental analysis. The decrease of M(w) led to transformation of crystal structure and increase of water solubility, whereas no significant chemical structure change in the backbone of chitosan was observed. Antifungal activities of chitosans with different M(w) against crop pathogenic fungi Phomopsis asparagi, Fusarium oxysoporum f. sp. Vasinfectum and Stemphylium solani were investigated at the concentrations of 100, 200 and 400mg/L. All degraded chitosans with low M(w) exhibited enhanced antifungal activity compared with original chitosan and the chitosan of 41.2kDa showed the highest activity. At 400mg/L, the chitosan of 41.2kDa inhibited growth of P. asparagi at 89.3%, stronger than polyoxin and triadimefon, the inhibitory effects of which were found to be 55.5% and 68.5%. All the results indicated that oxidative degradation under microwave irradiation was a promising technique for large-scale production of low M(w) chitosan for use in crop protection.  相似文献   

4.
Chitosans were prepared by H2O2 oxidative depolymerization from squid pens with low molecular weights (LMW) of 13,025, 7011, 4169, 2242 and 963 Da. The bile acid binding capacities and antioxidant properties of LMW chitosans were studied in vitro. LMW chitosans exhibited stronger bile acid binding capacities than that of chitosan. The scavenging ability of LMW chitosans against DPPH radicals improved with increasing concentration, and EC50 values were below 1.3 mg/mL. The EC50 values of LMW chitosans against hydroxyl radicals ranged from 0.93 to 3.66 mg/mL. All LMW chitosans exhibited a strong ferrous ion chelating effect and reducing power. At 1 mg/mL, the scavenging ability of chitosan-963 towards superoxide radicals was 67.76%. These results indicated that LMW chitosans which have stronger bile acid binding capacity and antioxidant activities may act as potential antioxidants in vitro.  相似文献   

5.
Chitosan was obtained from cuticles of the housefly (Musca domestica) larvae. Antibacterial activities of different Mw chitosans were examined against six bacteria. Antibacterial mechanisms of chitosan were investigated by measuring permeability of bacterial cell membranes and observing integrity of bacterial cells. Results show that the antibacterial activity of chitosan decreased with increase in Mw. Chitosan showed higher antibacterial activity at low pH. Ca2+ and Mg2+ could markedly reduce the antibacterial activity of chitosan. The minimum inhibitory concentrations of chitosans ranged from 0.03% - 0.25% and varied with the type of bacteria and Mw of chitosan. Chitosan could cause leakage of cell contents of the bacteria and disrupt the cell wall.  相似文献   

6.
Enzymatic degradation of chitosan polymer with Pectinex Ultra SPL was used to obtain derivatives with biological potential as protective agents against Phytophthora parasitica nicotianae (Ppn) in tobacco plants. The 24 h hydrolysate showed the highest Ppn antipathogenic activity and the chitosan native polymer the lowest. The in vitro growth inhibition of several Phytophthora parasitica strains by two chitosans of different DA was compared. While less acetylated chitosan (DA 1%) fully inhibited three P. parasitica strains at the doses 500 and 1000 mg/l the second polymer (DA 36.5%) never completely inhibited such strains. When comparing two polymers of similar molecular weight and different DA, again the highest antipathogenic activity was for the less acetylated polymer. However, degraded chitosan always showed the highest pathogen growth inhibition. Additionally, a bioassay in tobacco seedlings to test plant protection against Ppn by foliar application demonstrated that partially acetylated chitosan and its hydrolysate induced systemic resistance and higher levels of glucanase activity than less acetylated chitosan. Similarly, when treatments were applied as seeds coating before planting, about 46% of plant protection was obtained using chitosan hydrolysate. It was concluded that, while less acetylated and degraded chitosan are better for direct inhibition of pathogen growth, partially acetylated and degraded chitosan are suitable to protect tobacco against P. parasitica by systemic induction of plant resistance.  相似文献   

7.
壳聚糖对植物病原细菌的抑制作用研究   总被引:6,自引:1,他引:6  
本文通过测定最小抑制浓度和相对抑制率,观察了分子量和脱乙酰度对壳聚糖抑制植物病原细菌(胡萝卜软腐欧文氏菌Erwinia cartovara Var carotovara、油菜黄单孢菌绒毛草致病菌Xanthamonas campestris Pv holcicola、丁香假单孢菌黍致病变种Pseudomonas spyings Pv panici)作用的影响。结果表明:在一定范围内,随分子量和脱乙酰度的增大,壳聚糖的抑菌效果相应降低,而且各种病原细菌对不同,壳聚糖的敏感性也有很大差异。  相似文献   

8.
This paper considers the non-productive (inhibitory) binding of chitosans to lysozyme from chicken egg white. Chitosans are linear, binary heteropolysaccharides consisting of 2-acetamido-2-deoxy-β-d-glucose (GlcNAc; A-unit) and 2-amino-2-deoxy-β-d-glucose (GlcN, D-unit). The active site cleft of lysozyme can bind six consecutive sugar residues in subsites named A–F, and specific binding of chitosan sequences to lysozyme occurs with A-units in subsite C. Chitosans with different fractions of A-units (FA) induced nearly identical changes in the 1H NMR spectrum of lysozyme upon binding, and the concentration of bound lysozyme could be determined. The data were analysed using a modified version of the McGhee and von Hippel model for binding of large ligands to one-dimensional homogeneous lattices. The average value of the dissociation constant for different sequences that may bind to lysozyme (KaveD) was estimated, as well as the number of chitosan units covered by lysozyme upon binding. KaveD decreased with increasing FA-values at pH* 3 and 4.5, while the opposite was true at pH* 5.5. Contributions from different hexamer sequences to KaveD of the chitosans were considered, and the data revealed interesting features with respect to binding of lysozyme to partially N-acetylated chitosans. The relevance of the present data with respect to understanding lysozyme degradation kinetics of chitosans is discussed.  相似文献   

9.
Chitosans, prepared by homogeneous N-deacetylation of chitin, with degrees of N-acetylation ranging from 4 to 60% (FA = 0·04 to 0·60) exhibiting full water solubility and known random distribution of acetyl groups, were degraded with lysozyme. Initial degradation rates (r) were determined from plots of the viscosity decrease (Δ1/[η]) against time of degradation. The time course of degradation of chitosans with lysozyme were non-linear, while the time course of degradation of chitosans with an oxidative-reductive depolymerization reaction (using H2O2) showed the expected linear relationship for a first-order, random depolymerization reaction, independent of the chemical composition of the chitosan.

The effect of lysozyme concentration and substrate concentration on the initial degradation rates were determined, showing that this lysozyme-chitosan system obeys Michaelis-Menten kinetics.

The initial degradation rates of chitosan with lysozyme increased strongly with increasing fraction of acetylated units (FA). From a Michaelis-Menten analysis of the degradation data that assumes different catalytic activities of lysozyme for the different hexameric substrates in the polysaccharide chain, it is concluded that the hexameric substrates that contain three-four or more acetylated units contribute mostly to the initial degradation rate when lysozyme degrades partially N-acetylated chitosans.

A chitosan with a very low fraction of acetylated units (FA = 0·010) was studied as an enzyme inhibitor. Initial degradation rates of chitosan (with different FA values) decreased as the inhibitor concentration increased, while the relative rates stayed constant, indicating that the ratio between initial reaction rates for productive sites (hexamers containing three-four or more N-acetylated units) are unaffected by non-productive sites, as deduced from the theory of competing substrates.  相似文献   


10.
Low molecular weight chitosans (LMWC) of different molecular weight (4.1-5.6 kDa) were obtained by the depolymerization of chitosan using papain (from Carica papaya latex, EC. 3.4.22.2) at optimum conditions of pH 3.5 and 37 degrees C for 1-5 h. Scanning electron microscopy (SEM) showed approximately 15-fold decrease in the particle size after depolymerization. Decrease in the molecular weight was associated with decrease in the degree of acetylation (DA) as evidenced by circular dichroism (CD), FT-IR and solid-state CP-MAS 13C-NMR data. X-ray diffraction pattern revealed slight decrease in the crystallinity index (CrI) whereas the 13C-NMR data showed molecular inhomogeneity. LMWC showed lytic effect towards Bacillus cereus and Escherichia coli more efficiently than native chitosan. The growth inhibitory effect was maximal towards B. cereus, with minimum inhibitory concentration (MIC) of 0.01% (w/v).  相似文献   

11.
Low-molecular-weight chitosans with a viscosity-average molecular weight (M) of 5 to 27 kDa and an equal degree of deacetylation (DD, 85%) were highly active against Pseudomonas aureofaciens, Enterobacter agglomerans, Bacillus subtilis, and Bifidobacterium bifidum791, causing death in 80 to 100% of cells. An exception to this tendency was Escherichia coli, for which the rate of cell death induced by the 5-kDa chitosan, was 38%. The antibacterial effect was manifested as early as 10 min after the incubation of 12-kDa chitosan with B. subtilis or E. coli cells. Candida krusei was almost insensitive to the above crab chitosans. However, Candida krusei was highly sensitive to chitosans with M 5, 6, 12, 15.7, and 27 kDa: the minimum inhibitory concentration (MIC) varied from 0.06 to 0.005%. Chitosans with M 5, 12, and 15.7 kDa exerted an antibacterial effect on Staphylococcus aureus. Chitosans with M 5, 15.7, and 27 kDa had no effect on Bifidobacterium bifidum ATCC 14893. The antibacterial effect of the 4-kDa chitosan on E. coli and B. bifidum 791 increased with DD in the range 55–85%.  相似文献   

12.
Four different kinds of chitosans were prepared by treating crude chitin with various NaOH concentrations. The antimicrobial activities of the chitosans were tested against four species of food spoilage microorganisms (Lactobacillus plantarum, Lactobacillus fructivorans, Serratia liquefaciens, and Zygosaccharomyces bailii). The initial effect of the chitosans was biocidal, and counts of viable cells were significantly reduced. After an extended lag phase, some strains recovered and resumed growth. The activities of chitosan against these microorganisms increased with the concentration. Chitosan-50 was most effective against L. fructivorans, but inhibition of L. plantarum was greatest with chitosan-55. There was no significant difference among the chitosans in their antimicrobial activity against S. liquefaciens and Z. bailii. The addition of chitosan to mayonnaise significantly decreased the viable cell counts of L. fructivorans and Z. bailii during storage at 25°C. These results suggest that chitosan can be used as a food preservative to inhibit the growth of spoilage microorganisms in mayonnaise.  相似文献   

13.
Four different kinds of chitosans were prepared by treating crude chitin with various NaOH concentrations. The antimicrobial activities of the chitosans were tested against four species of food spoilage microorganisms (Lactobacillus plantarum, Lactobacillus fructivorans, Serratia liquefaciens, and Zygosaccharomyces bailii). The initial effect of the chitosans was biocidal, and counts of viable cells were significantly reduced. After an extended lag phase, some strains recovered and resumed growth. The activities of chitosan against these microorganisms increased with the concentration. Chitosan-50 was most effective against L. fructivorans, but inhibition of L. plantarum was greatest with chitosan-55. There was no significant difference among the chitosans in their antimicrobial activity against S. liquefaciens and Z. bailii. The addition of chitosan to mayonnaise significantly decreased the viable cell counts of L. fructivorans and Z. bailii during storage at 25 degrees C. These results suggest that chitosan can be used as a food preservative to inhibit the growth of spoilage microorganisms in mayonnaise.  相似文献   

14.
Four chitosans with different molecular weights and degrees of deacetylation degree and 28 chitosans derived from these initial chitosans by ultrasonic degradation have been characterized by gel permeation chromatography (GPC), FT-IR spectroscopy, X-ray diffraction and titrimetric analyses. Antimicrobial activities were investigated against E. coli and S. aureus using an inhibitory rate technique. The results showed that ultrasonic treatment decreased the molecular weight of chitosan, and that chitosan with higher molecular weight and higher DD was more easily degraded. The polydispersity decreased with ultrasonic treatment time, which was in linear relationship with the decrease of molecular weight. Ultrasonic degradation changed the DD of initial chitosan with a lower DD (<90%), but not the DD of the initials chitosan with a higher DD (>90%). The increased crystallinity of ultrasonically treated chitosan indicated that ultrasonic treatment changed the physical structure of chitosan, mainly due to the decrease of molecular weight. Ultrasonic treatment enhanced the antimicrobial activity of chitosan, mainly due to the decrease of molecular weight.  相似文献   

15.
Many bacteria are known to inhibit food pathogens, such as Listeria monocytogenes, by secreting a variety of bactericidal and bacteriostatic substances. In sharp contrast, it is unknown whether yeast has an inhibitory potential for the growth of pathogenic bacteria in food. A total of 404 yeasts were screened for inhibitory activity against five Listeria monocytogenes strains. Three hundred and four of these yeasts were isolated from smear-ripened cheeses. Most of the yeasts were identified by Fourier transform infrared spectroscopy. Using an agar-membrane screening assay, a fraction of approximately 4% of the 304 red smear cheese isolates clearly inhibited growth of L. monocytogenes. Furthermore, 14 out of these 304 cheese yeasts were cocultivated with L. monocytogenes WSLC 1364 on solid medium to test the antilisterial activity of yeast in direct cell contact with Listeria. All yeasts inhibited L. monocytogenes to a low degree, which is most probably due to competition for nutrients. However, one Candida intermedia strain was able to reduce the listerial cell count by 4 log units. Another four yeasts, assigned to C. intermedia (three strains) and Kluyveromyces marxianus (one strain), repressed growth of L. monocytogenes by 3 log units. Inhibition of L. monocytogenes was clearly pronounced in the cocultivation assay, which simulates the conditions and contamination rates present on smear cheese surfaces. We found no evidence that the unknown inhibitory molecule is able to diffuse through soft agar.  相似文献   

16.
Selectivity coefficients for binding of negative and positive ions to chitosans of different chemical composition have been determined by equilibrium dialysis. Chitosans with different fraction of acetylated units (FA of 0.01 and 0.49) generally behaved similarly in their selectivity towards both negative and positive ions. No selectivity was found in the binding of chloride and nitrate ions, while chitosan showed a strong selectivity towards molybdate polyoxyanions, with selectivity coefficients around 100. Chitosan showed a strong selectivity towards copper (Cu2+) compared to the metal ions zinc (Zn2+), cadmium (Cd2+) and nickel (Ni2+), with selectivity coefficients from 10 to 1000, while little or no selectivity could be detected with the other metal ions. Ionic strength and pH did not influence the selectivity coefficients of the chitosans towards the metal ions.  相似文献   

17.
Many bacteria are known to inhibit food pathogens, such as Listeria monocytogenes, by secreting a variety of bactericidal and bacteriostatic substances. In sharp contrast, it is unknown whether yeast has an inhibitory potential for the growth of pathogenic bacteria in food. A total of 404 yeasts were screened for inhibitory activity against five Listeria monocytogenes strains. Three hundred and four of these yeasts were isolated from smear-ripened cheeses. Most of the yeasts were identified by Fourier transform infrared spectroscopy. Using an agar-membrane screening assay, a fraction of approximately 4% of the 304 red smear cheese isolates clearly inhibited growth of L. monocytogenes. Furthermore, 14 out of these 304 cheese yeasts were cocultivated with L. monocytogenes WSLC 1364 on solid medium to test the antilisterial activity of yeast in direct cell contact with Listeria. All yeasts inhibited L. monocytogenes to a low degree, which is most probably due to competition for nutrients. However, one Candida intermedia strain was able to reduce the listerial cell count by 4 log units. Another four yeasts, assigned to C. intermedia (three strains) and Kluyveromyces marxianus (one strain), repressed growth of L. monocytogenes by 3 log units. Inhibition of L. monocytogenes was clearly pronounced in the cocultivation assay, which simulates the conditions and contamination rates present on smear cheese surfaces. We found no evidence that the unknown inhibitory molecule is able to diffuse through soft agar.  相似文献   

18.
Physicochemical properties of a homogeneous series of chitosans with different degrees of acetylation and almost the same degree of polymerization were investigated in an ammonium acetate buffer. Techniques such as interferometry, static light scattering (in batch or coupled on line with a chromatographic system), and viscometry were processed. All of the results agree with a unique law of behavior only depending on the degree of acetylation of the polymer. Indeed, values of the refractive index increment, radius of gyration, second viral coefficient, and intrinsic viscosity are decreasing in the same way as DA is increasing. Three distinct domains of DA were defined and correlated to the different behaviors of chitosans: (i) a polyeletrolyte domain for DA below 20%; (ii) a transition domain between DA = 20% and 50% where chitosan loses its hydrophilicity; (iii) a hydrophobic domain for DAs over 50% where polymer associations can arise. Conformations of chitosan chains were studied by the calculations of the persistence lengths (L(p)). The average value was found to be close to 5 nm, in agreement with the wormlike chain model, but no significant variation of L(p) with the degree of acetylation was noticed.  相似文献   

19.
J Grenier  C Potvin    A Asselin 《Plant physiology》1993,103(4):1277-1283
Proteins from intercellular fluid extracts of chemically stressed barley (Hordeum vulgare L.) leaves were separated by native polyacrylamide gel electrophoresis at alkaline or acid pH. Polyacrylamide gels contained Saccharomyces cerevisiae (bakers' yeast) or Schizosaccharomyces pombe (fission yeast) crude cell walls for assaying yeast wall lysis. In parallel, gels were overlaid with a suspension of yeasts for assaying growth inhibition by pathogenesis-related proteins. The same assays were also performed with proteins separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing conditions. In alkaline native polyacrylamide gels, only one band corresponding to yeast cell wall lytic activity was found to be inhibitory to bakers' yeast growth, whereas in acidic native polyacrylamide gels one band inhibited the growth of both yeasts. Under denaturing nonreducing conditions, one band of 19 kD inhibited the growth of both fungi. The 19-kD band corresponded to a basic protein after two-dimensional gel analysis. The 19-kD protein with yeast cell wall lytic activity and inhibitory to both yeasts was found to be different from previously reported barley chitosanases that were lytic to fungal spores. It could be different from other previously reported lytic antifungal activities related to pathogenesis-related proteins.  相似文献   

20.
The control over the crystallinity of chitosan and chitosan/ovalbumin films can be achieved via an appropriate balance of the hydrophilic/hydrophobic interactions during the film formation process, which then controls the release kinetics of ovalbumin. Chitosan films were prepared by solvent casting. The presence of the anhydrous allomorph can be viewed as a probe of the hydrophobic conditions at the neutralization step. The semicrystalline structure, the swelling behavior of the films, the protein/chitosan interactions, and the release behavior of the films were impacted by the DA and the film processing parameters. At low DAs, the chitosan films neutralized in the solid state corresponded to the most hydrophobic environment, inducing the crystallization of the anhydrous allomorph with and without protein. The most hydrophilic conditions, leading to the hydrated allomorph, corresponded to non-neutralized films for the highest DAs. For the non-neutralized chitosan acetate (amorphous) films, the swelling increased when the DA decreased, whereas for the neutralized chitosan films, the swelling decreased. The in vitro release of ovalbumin (model protein) from chitosan films was controlled by their swelling behavior. For fast swelling films (DA?=?45%), a burst effect was observed. On the contrary, a lag time was evidenced for DA?=?2.5% with a limited release of the protein. Furthermore, by blending chitosans (DA?=?2.5% and 45%), the release behavior was improved by reducing the burst effect and the lag time. The secondary structure of ovalbumin was partially maintained in the solid state, and the ovalbumin was released under its native form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号