首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The frequency of dispersal of invertebrates among lakes depends upon perspective and spatial scale. Effective passive dispersal requires both the transport of propagules and the establishment of populations large enough to be detected. At a global scale, biogeographic patterns of cladoceran zooplankton species suggest that effective dispersal among continents was originally rare, but greatly increased in the past century with expanded commerce. Genetic analysis allows some reconstruction of past dispersal events. Allozyme and mitochondrial DNA comparisons among New World and Old-World populations of several exotic cladocerans have provided estimates for likely source populations of colonists, their dispersal corridors, and timing of earlier dispersal events. Detecting the Old-World tropical exotic Daphnia lumholtzi early in its invasion of North America has allowed detailed analysis of its spatial spread. Twelve years of collection records indicate a rapid invasion of reservoirs in the United States, by both regional spread and long-distance jumps to new regions. Combining landscape features with zooplankton surveys from south-central US reservoirs revealed higher colonization rates of D. lumholtzi at lower landscape positions, a result which can be explained by either greater propagule load or by higher susceptibility of these downstream reservoirs. Because invaded reservoirs provide a source of propagules for nearby floodplain ponds, the rarity of this species in ponds suggests limitation by local environments. Such analyses of invading species over multiple spatial scales allow a better understanding of ecological processes governing invasion dynamics.  相似文献   

2.
It is generally accepted that native communities provide resistance against invaders through biotic interactions. However, much remains uncertain about the types of ecological processes and community attributes that contribute to biotic resistance. We used experimental mesocosms to examine how zooplankton community structure, invertebrate predation, and nutrient supply jointly affected the establishment of the exotic Daphnia lumholtzi. We predicted that establishment would increase with declining biomass and diversity of native zooplankton communities and that an invertebrate predator (IP) would indirectly facilitate the establishment of D. lumholtzi due to its relatively long predator-deterring spines. Furthermore, we hypothesized that elevated nutrient supply would increase algal food availability and facilitate establishment. Only when the biomass and diversity of native zooplankton were significantly reduced, was D.␣lumholtzi able to successfully invade mesocosms. Although invertebrate predation and resource supply modified attributes of native zooplankton communities, they did not influence the establishment of D. lumholtzi. Overall, our␣results are consistent with observed population dynamics in invaded reservoirs where D.␣lumholtzi tends to be present only during the late summer, coinciding with historic mid-summer declines in native zooplankton populations. Lakes and reservoirs may be more susceptible to invasion not only by D. lumholtzi, but also by other planktonic species, in the late summer when native communities exhibit characteristics associated with lower levels of biotic resistance.  相似文献   

3.
Organisms living in lakes face the problem of dispersing through an uninhabitable matrix in order to reach suitable habitat. One possible mechanism for moving between lakes is by surface water connections. We used a seven-year data set to investigate the spread of the exotic cladoceran Daphnia lumholtzi among Missouri reservoirs with respect to stream connections. Reservoirs that were downstream of known populations of D. lumholtzi were more likely to become invaded than those that were not. However, invasion likelihood was only weakly related to the presence of upstream source populations, and reservoirs without potential upstream sources were colonized at a rate of 7.3% per year. The difference in invasion rate between lakes with and without upstream sources varied among years, and was significant in only two of the six years of study. In addition, the higher invasion rate of downstream lakes could be explained by their greater surface area. These patterns suggest that surface water connections may form one means of dispersal for D. lumholtzi, although overland movement is also important. The ability to utilize several modes of dispersal may explain the rapid expansion of this species' range since its arrival in North America.  相似文献   

4.
1. The exotic cladoceran Daphnia lumholtzi has recently invaded freshwater systems throughout the United States. Daphnia lumholtzi possesses extravagant head spines that are longer than those found on any other North American Daphnia. These spines are effective at reducing predation from many of the predators that are native to newly invaded habitats; however, they are plastic both in nature and in laboratory cultures. The purpose of this experiment was to better understand what environmental cues induce and maintain these effective predator‐deterrent spines. We conducted life‐table experiments on individual D. lumholtzi grown in water conditioned with an invertebrate insect predator, Chaoborus punctipennis, and water conditioned with a vertebrate fish predator, Lepomis macrochirus. 2. Daphnia lumholtzi exhibited morphological plasticity in response to kairomones released by both predators. However, direct exposure to predator kairomones during postembryonic development did not induce long spines in D. lumholtzi. In contrast, neonates produced from individuals exposed to Lepomis kairomones had significantly longer head and tail spines than neonates produced from control and Chaoborus individuals. These results suggest that there may be a maternal, or pre‐embryonic, effect of kairomone exposure on spine development in D. lumholtzi. 3. Independent of these morphological shifts, D. lumholtzi also exhibited plasticity in life history characteristics in response to predator kairomones. For example, D. lumholtzi exhibited delayed reproduction in response to Chaoborus kairomones, and significantly more individuals produced resting eggs, or ephippia, in the presence of Lepomis kairomones.  相似文献   

5.
1. We examined 7–12 years of monthly to quarterly historical data from 15 lakes in FL, U.S.A. to determine the extent and outcome of invasion by the alien cladoceran Daphnia lumholtzi Sars. 2. The alien species was found in 10 of the 15 lakes, including Florida’s three largest lakes: Okeechobee, George and Apopka. All the surveyed lakes had resident populations of the smaller native species Daphnia ambigua Scourfield. 3. In most of the lakes, D. ambigua occurred seven to ninefold more often in plankton samples than D. lumholtzi, and at 10‐ to 100‐fold higher maximal densities. One exception was a small lake in central Florida (Lake Jesup), where D. lumholtzi attained high densities on several occasions in the 10 years of sampling. 4. In Lake Okeechobee, where data were of sufficient quality and quantity to perform statistical analyses, the results of canonical correlation analysis indicated that high densities of D. lumholtzi were correlated with lower concentrations of suspended solids, high algal biomass and higher temperature, whereas the opposite conditions were correlated with high densities of D. ambigua. 5. Based on the majority of data, D. lumholtzi has successfully invaded many lakes in Florida, yet it has not become a substantive component of the zooplankton. Additional research is needed to determine whether resources, fish predation or some other factor is responsible for this outcome of invasion.  相似文献   

6.
Juvenile Nile tilapia (Oreochromis niloticus) are omnivorous, and the question asked in this study is how they affect on their environment? Do they mainly act as predators on the cladoceran zooplankton or do they compete with the cladocerans for phytoplankton? This problem was studied in three ponds with and three ponds without small tilapia (3–5 cm). The fish growth rate, the succession of plankton species and the changes in abiotic conditions, were monitored over a period of 67 days. The fish biomass was kept low and the mean was approximately constant (12.6 g m?2) during the experiment. Phosphate was added to avoid phytoplankton nutrient limitation. Although the diet of Nile tilapia contained both phytoplankton and zooplankton, the fish affected the ecosystem in a similar way as zooplanktivorous fish. The fish ponds got more phytoplankton due to increase of Chlorophyta. Effects on the other phytoplankton groups Euglenophyta, Bacillariophyta, Cryptophyta and Cyanophyta could not be registered. The ponds without fish had higher densities of Daphnia lumholtzi and D. barbata. The other Cladocerans seemed less influenced by fish presence. The relative fish growth rate was most positively correlated with the density of Daphnia lumholtzi, Diaphanosmoa excisum and Bosmina longirostris. Tilapia seemes to have two feeding modes: (1) preying on large zooplankton and (2) unselective filtration of small planktonic organisms such as phytoplankton. In our experiment the first feeding mode affected the ecosystem more than the second.  相似文献   

7.
Daphnia lumholtzi comprises a substantial component of the zooplankton community during mid‐ to late‐summer in Lake Chautauqua, a floodplain lake along the Illinois River near Havana, Illinois. In order to quantify the utilization of D. lumholtzi by juvenile fishes, diet analyses were conducted for seven juvenile fish species collected from Lake Chautauqua during the 2001 annual drawdown period. Freshwater drum Aplodinotus grunniens and emerald shiner Notropis atherinoides demonstrated negative selectivity for D. lumholtzi relative to native zooplankton species whereas four species of fish (bluegill Lepomis macrochirus, white bass Morone chrysops, white crappie Pomoxis annularis and black crappie Pomoxis nigromaculatus) consumed substantial amounts of D. lumholtzi. Although selectivity values for D. lumholtzi varied among these fish species, positive selection for D. lumholtzi increased similarly among larger size classes of each fish species, and corresponded with ontogenetic shifts in diet. Mean body length of D. lumholtzi consumed by 20–69 mm LT juvenile fishes ranged from 0·75 to 0·99 mm with a calculated total length range of 2·0–2·6 mm. Results from this study provide evidence that high abundances of D. lumholtzi in mid‐ to late‐summer provide an additional food source for several juvenile fish species during a time when abundances of large native cladoceran species (i.e. Daphnia) are low, and juvenile fishes are searching for larger prey associated with ontogenetic shifts from zooplankton to macroinvertebrates and fishes. Because zooplankton production is typically lower in rivers than in lakes, survivorship of juvenile fishes produced in floodplain lakes may be higher in riverine systems if they are not reliant on zooplankton as a primary food resource. Therefore, high abundances of D. lumholtzi may benefit juvenile fishes in managed floodplain lakes, such as Lake Chautauqua, by increasing growth and facilitating the transition from zooplanktivory to insectivory or piscivory.  相似文献   

8.
The mechanisms underlying successful biological invasions often remain unclear. In the case of the tropical water flea Daphnia lumholtzi, which invaded North America, it has been suggested that this species possesses a high thermal tolerance, which in the course of global climate change promotes its establishment and rapid spread. However, D. lumholtzi has an additional remarkable feature: it is the only water flea that forms rigid head spines in response to chemicals released in the presence of fishes. These morphologically (phenotypically) plastic traits serve as an inducible defence against these predators. Here, we show in controlled mesocosm experiments that the native North American species Daphnia pulicaria is competitively superior to D. lumholtzi in the absence of predators. However, in the presence of fish predation the invasive species formed its defences and became dominant. This observation of a predator-mediated switch in dominance suggests that the inducible defence against fish predation may represent a key adaptation for the invasion success of D. lumholtzi.  相似文献   

9.
Daphnia lumholtzi is a planktonic crustacean native to subtropical regions in Africa, Asia and Australia. Since its invasion to the southern USA in ~1990 it has spread across North America as far north as the Laurentian Great Lakes. We assessed invasion history using microsatellite makers and to explore the influence of mean annual temperature on the genetic structure along a latitudinal gradient in North America. Genotypic data were obtained from 9 microsatellite markers for 178 individuals from 13 populations (eight populations introduced to North America and five populations in the native range). Pairwise Fst values as well as Bayesian clustering showed a strong subdivision between native and introduced populations. Bayesian clustering identified multiple genetic clusters in recently invaded locations, suggestive of multiple invasions from various sources, including Asia and Africa. Using variation partitioning, we determined the amount of variation for genetic clusters of populations in the invaded range due to mean annual air temperature and the year of first detection. The results point to a primary introduction into the southern range of North America, with a subsequent northward expansion, and multiple introductions possibly from both the native range and by secondary spread from previously-invaded locations. Separate analysis of genetic clusters within the invaded range suggests additional effects of temperature conditions on geographic genetic structure, possibly as a consequence of D. lumholtzi’s tropical origin.  相似文献   

10.
Predation by fish has commonly been viewed as a primary driverof spatial and seasonal variation in Daphnia dominance and thesize structure of zooplankton communities. Yet, previous researchsuggests that large Daphnia do not always dominate in the absenceof predation. As alternatives to the planktivory model, numerousmechanisms have been put forth, including the effect of resourcecompetition and its interaction with resource quantity and qualityand abiotic factors (e.g. temperature). Here results are presentedof a field survey of 18 fishless, permanent ponds in southwestMichigan in which spatiotemporal variation in Daphnia pulexabundance and several potential determinants of this variationare explored. Results revealed a large amount of variation inD. pulex incidence and relative biomass, with some ponds exhibitingseasonal losses, some having few or no Daphnia, and some beingdominated by D. pulex for the entire sample period. Redundancyanalysis of zooplankton composition and pond environmental variables(biotic and abiotic) showed no relationship between D. pulexbiomass and measures of Chaoborus abundance, algal resourceproduction, or algal resource quality (including seston C:N:P).Instead, pH and temperature (both of which covaried) showedthe strongest relationship with D. pulex biomass.  相似文献   

11.
We investigated the effects of water temperature on the exoticcladoceran Daphnia lumholtzi in a eutrophic Kansas reservoir(USA) and under laboratory conditions. Daphnia lumholtzi demonstrateda distinct late summer appearance in the reservoir at temperaturesbetween 26 and 31°C, which corresponded with steep declinesin the densities of native Daphnia spp. Laboratory life-tableexperiments confirmed that D. lumholtzi performs well at elevatedwater temperatures. The intrinsic rate of increase (r), netreproductive rate (Ro), age at first reproduction, survivorship(lx) and molting rates all demonstrate that D. lumholtzi hasa high temperature optimum between 20 and 30°C. A comparisonof literature-reported r-values indicates that the reproductiverate of D. lumholtzi is comparable with other Daphnia spp. between20 and 25°C, but also implies that D. lumholtzi may out-performsome Daphnia spp. at temperatures >25°C. Collectively,these results suggest that D. lumholtzi may be taking advantageof a late summer thermal niche, and that this invader may continueto colonize lakes and reservoirs in the southern US. However,life table data also indicate that D. lumholtzi performs poorlyat temperatures < 10°C, which may inhibit the range expansionof this invader into northern waters.  相似文献   

12.
Michels  Erik  Cottenie  Karl  Neys  Liesbeth  De Meester  Luc 《Hydrobiologia》2001,442(1-3):117-126
In systems of interconnected ponds or lakes, the dispersal of zooplankton may be mediated by the active population component, with rivulets and overflows functioning as dispersal pathways and the dispersal being unidirectional. Such systems offer the possibility to study the impact of dispersal rates on local population dynamics and community structure, and provide opportunities to quantify dispersal in the field in a straightforward manner. In this study, dispersal of active zooplankton populations among interconnected ponds was quantified directly in the field by sampling the small waterways connecting the ponds. The number of dispersing zooplankton sampled in connecting elements was on average high (almost 7000 ind h–1). However, the contribution of dispersing individuals to total population size in the target ponds was very limited (< 1% 24 h–1.). Only a weak diel pattern in dispersal rates was observed.  相似文献   

13.
1. Warmer temperatures may increase cyanobacterial blooms in freshwater ecosystems, yet few ecological studies examine how increases in temperature and cyanobacterial blooms will alter the performance of non‐native species. We evaluated how competitive interactions and interactions between these two drivers of ecological change influence the performance of non‐native species using the native zooplankton Daphnia pulex and the non‐native zooplankton Daphnia lumholtzi as a model system. Based on the literature, we hypothesised that D. lumholtzi would perform best in warmer temperatures and in the presence of cyanobacteria. 2. Laboratory competition experiments showed that in the absence of competitors, growth rates of D. pulex (but not D. lumholtzi) were reduced at higher temperatures and with the cyanobacterial foods Anabaena flos‐aquae and Microcystis aeruginosa. In the presence of competitors, however, D. pulex emerged as the superior resource competitor at both temperatures with cyanobacterial food. We therefore predicted that, if competitive interactions are important to its establishment, D. lumholtzi would perform best in the absence of cyanobacteria in heated environments. 3. As predicted, when both species were introduced at low densities in field mesocosms, D. lumholtzi performed best at high temperatures without added cyanobacteria and worst at ambient temperatures with added cyanobacteria, indicating that competitive interactions are likely to be important for its establishment. 4. Taken together, these studies indicate that, while D. lumholtzi may benefit from increases in temperature, associated increased cyanobacterial blooms may hinder its performance. Thus, our findings underscore the importance of considering biotic interactions such as competition when predicting the future establishment of non‐native species in response to climate warming.  相似文献   

14.
1. Invasion of tropical zooplankton into temperate lakes provides an interesting opportunity to explore habitat segregation in a thermal gradient. 2. We explored differing vertical positioning of native and exotic Daphnia (Daphnia mendotae and Daphnia lumholtzi) in a large indoor mesocosm system (Plön plankton towers) during 2 month‐long experiments. The two towers were manipulated to provide gradients of both temperature (15–29 °C) and algal food (0.05–0.58 mg C L?1) and a day–night cycle. 3. Both juvenile and adult D. lumholtzi showed a ‘typical’ vertical migration pattern, with higher densities in the epilimnion at night than during the day. They avoided the food‐poor middle layer. In contrast, D. mendotae adults showed little tendency to migrate into the epilimnion at night, remaining in the cooler hypolimnion while juveniles migrated. The vertical distribution of D. mendotae appeared unaffected by the presence of D. lumholtzi. 4. The strong migration behaviour of D. lumholtzi in the absence of fish cues suggests that this behaviour may be a constitutive trait. Habitat partitioning of the two species is probably the result of different thermal tolerances, with D. mendotae constrained to remaining in deeper water by high temperatures in the epilimnion and the tropical D. lumholtzi able to use the warm epilimnion at night.  相似文献   

15.
Species composition and body-size distribution were studiedin the crustacean zooplankton communities of two limnologicallysimilar lake localities situated 50 km apart in the Pasvik RiverSystem, northern Norway. A recent invasion and successive downstreamexpansion of vendace (Coregonus albula), a specialized zooplanktivorousfish, allowed comparisons between sites with different predationpressures. Vendace had established a high population densityand was the dominant fish species in the pelagic of the upperlocality, but had just invaded the lower locality with a smallnumber of individuals. Whitefish (Coregonus lavaretus), a closelyrelated but less specialized zooplanktivore species, dominatedthe native fish community of both lakes. The zooplankton communityof the upper locality was dominated in June and August by Bosminalongirostris, the smallest zooplankton species represented inthe water course, and in September by Daphnia cristata. Thelower locality was dominated by the larger Holopedium gibberumand Eudiaptomus graciloides in June, by D.cristata in August,and by D.cristata and B.longirostris in September. The meanbody size of the three most abundant cladoceran species wassignificantly smaller in the upper locality, compared to thelower locality. It was concluded that the invasion and establishmentof a dense vendace population in the upper locality had increasedthe predation pressure in the pelagic, resulting in a reductionof body size and a shift towards smaller species in the zooplanktoncommunity.  相似文献   

16.
Four species of cyclomorphic Daphnia (D.pulex, D.galeata mendotae,D.retrocurva, D.lumholtzi) were exposed to the insecticide carbarylfor a short term (8–4 h) from the final embryonic stageto the first instar. Daphnia pulex formed neckteeth, and theremaining three Daphnia species developed high helmets and longtailspines. The results suggest that the development of suchprotuberant structures (anti-predator morphologies) in responseto the insecticide exposure is a general phenomenon in Daphnia,and that stimuli on the nervous system of Daphnia may inducethe morphological changes, which originally evolved as a responseto predator kairomone. Two clones of D.pulcx were examined anda clone which was more sensitive to the predator Chaobonts kairomonethan another developed more marked neckteeth in response tocarbaryl, suggesting that the sensitivity in morphological responseto the insecticide may be related to the sensitivity to thekairomone. 1Present and permanent address: Regional Environment Division,National Institute for Environmental Studies Onogawa, Tsukuba,Ibaraki 305, Japan  相似文献   

17.
We used seed bank analyses to investigate the role of dispersal in limiting invasion by Eurasian Lythrum salicaria within and among North American wetlands, and the changes in seed bank diversity associated with this invader. We compared the number and species composition of seedlings emerging from soil sampled in 11 uninvaded wetlands and paired uninvaded and invaded sites within 10 invaded wetlands under both seedling competition and noncompetitive conditions. Almost no L. salicaria emerged in samples from uninvaded wetlands, indicating dispersal limitation despite prodigious seed production in nearby wetlands. However L. salicaria emerged in all samples from uninvaded sites in invaded wetlands, suggesting environmental limits on establishment within invaded wetlands. Conditions that provided opportunities for seedlings to compete reduced survival of Typha spp. but not L. salicaria seedlings. However, this was due to species-specific differences in post-emergence mortality rather than response to competition. Competition did reduce seedling mass, but this effect did not differ among species. Species richness of emerging seedlings was lower for invaded than uninvaded wetlands. Lower seed bank richness may be a cause or consequence of L. salicaria invasion. Efforts to reduce seed dispersal to uninvaded wetlands would likely slow the spread of this invader.  相似文献   

18.
C. H. D Magadza 《Hydrobiologia》1994,272(1-3):277-292
Zooplankton was a useful tool in evaluation of eutrophication control in Lake Chivero, a tropical man made impoundment. Principal component analysis revealed both spatial and temporal changes in zooplankton community structure which were related to nutrient inflows as well as changes in nutrient content of the lake. Studies on filtration rates of different algae by Bosmina longirostris and Daphnia lumholtzi demonstrated that the response of zooplankton to eutrophication was related to their inability to utilize colonial algal species that develop in a nutrient rich-environment.  相似文献   

19.
Daphnid morphology deters fish predators   总被引:3,自引:0,他引:3  
Spine and helmet production in zooplankton are thought to provide protection from invertebrate rather than vertebrate predators. We examined selectivity for Daphnia lumholtzi, a species that exhibits extreme cyclomorphosis with a large helmet and long tail spine (total length can exceed 5 mm), by juvenile bluegill (15–80 mm) in the laboratory and field. Bluegill consumed more D. pulex than D. lumholtzi when the species were presented alone. When the daphnids were offered together in equal numbers, bluegill selected against D. lumholtzi. Bluegill foraging behavior helped explain the observed nonrandom feeding. Bluegill capture efficiency foraging on D. pulex was high (85–100%) and handling times were low (usually too short to detect), whereas efficiencies were lower (40–96%) and handling times were longer (1–3 s) when foraging on D. lumholtzi, particularly for fish <50 mm. As they gained experience, bluegill <50 mm that oriented towards D. lumholtzi rejected them more often than striking. In addition, more D. lumholtzi were rejected and expelled than were D. pulex. From these experiments, we conclude that larger bluegill (>50 mm) are able to forage more successfully on D. lumholtzi than smaller fish. Selectivity by bluegill collected from a reservoir infested with D. lumholtzi verified our laboratory conclusions. Smaller bluegill selected against D. lumholtzi, whereas it was a preferred diet item for bluegill >50 mm. These results show that the morphology of D. lumholtzi interferes with predation by small planktivorous fish, posing foraging constraints for these fish more similar to those of piscivores, where handling time is important, than to those of planktivores, where prey density is of primary importance. Received: 13 August 1998 / Accepted 21 August 1998  相似文献   

20.
Wolbachia endobacteria are commonly associated with a varietyof arthropod species as hosts and induce known changes in theirhosts’ life-history traits. Despite exhibiting severalWolbachia-like life-history traits, and despite being a commonmodel organism, the zooplankton Daphnia pulex has not been formallytested for infection with Wolbachia. Among 203 isolates exhibitinga range of life-history phenotypes, we found no evidence ofWolbachia. This leaves the genes of D. pulex as the most likelycause of its own life-history traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号