首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
The synthesis and incorporation into oligodeoxy­nucleotides of two novel, conformationally restricted abasic (AB) site analogs are described. The stability of oligonucleotide 18mer duplexes containing one such AB site opposite any of the four natural DNA bases was investigated by UV melting curve analysis and compared to that of duplexes containing a conformationally flexible propanediol unit 1 or a tetrahydrofuran unit 2 as an AB site analog. No major differences in the melting temperatures (ΔTm 0–3°C) between the different abasic duplexes were observed. All AB duplexes were found to have Tms that were lower by 9–15°C relative to a fully matched 18mer control duplex, and by 4–10°C relative to the corresponding 19mer duplexes in which the AB site is replaced by a mismatched nucleobase. Thus we conclude that the loss of stability of a duplex that is encountered by removal of a nucleobase from the stack cannot be compensated with conformational restriction of the AB site. From the van’t Hoff transition enthalpies obtained from the melting curves, it appears that melting cooperativity is higher for the duplexes containing the conformationally rigid AB sites. Fluorescence quenching experiments with duplexes containing the fluorescent base 2-amino­purine (2AP) opposite the AB sites showed a weak tendency towards more efficient stacking of this base in duplexes containing the conformationally constrained AB sites. Thus, such AB sites may structurally stabilize the cavity formed by the removal of a base. Potential applications emerging from the properties of such conformationally constrained AB sites in DNA diagnostics are discussed.  相似文献   

2.
Eight base analogs were tested as third strand residues in otherwise homopyrimidine strands opposite each of the 'direct' (A.T and G.C) and 'inverted' (T.A and C.G) Watson-Crick base pairs, using UV melting profiles to assess triplex stability. The target duplexes contained 20 A.T base pairs and a central test base pair X.Y, while the third strand contained 20 T residues and a central Z test base. Z included 5-bromo-uracil, 5-propynyluracil, 5-propynylcytosine, 5-methyl-cytosine, 5-bromocytosine, hypoxanthine, 2-amino-purine and 2,6-diaminopurine. Some of the base analogs enhanced third strand binding to the target duplex with one or other 'inverted' central base pair relative to the binding afforded by any of the canonical bases. Other analogs did the same for the duplexes with the 'direct' target pairs. The increasing order of triplex stabilization by these base analogs is: opposite the 'inverted' base pairs, for T.A, A < C < 5-pC < 5-pU < T < 5-BrC < 5-meC < 5-BrU < 2-AP < 2,6-DAP < Hy < G, for C.G, 2-AP < A < Hy < G < 5-pC < 5-BrC < 5-meC < C < 2,6-DAP < T < 5-BrU < 5-pU; opposite the 'direct' base pairs, for A.T, 2-AP < A < 5-meC < C < G < Hy < 2,6-DAP < 5-pU < T = 5-BrU < 5-BrC < 5-pC, for G.C, G < 2,6-DAP < 2-AP < A < Hy < T < 5-BrU < 5-pU < 5-pC < 5-BrC < C < 5-meC.  相似文献   

3.
The X-ray repair cross-complementing group 1 (XRCC1) protein plays a central role in base excision repair (BER) interacting with and modulating activity of key BER proteins. To estimate the influence of XRCC1 on interactions of BER proteins poly(ADP-ribose) polymerase 1 (PARP1), apurinic/apyrimidinic endonuclease 1 (APE1), flap endonuclease 1 (FEN1), and DNA polymerase beta (Pol beta) with DNA intermediates, photoaffinity labeling using different photoreactive DNA was carried out in the presence or absence of XRCC1. XRCC1 competes with APE1, FEN1, and PARP1 for DNA binding, while Pol beta increases the efficiency of XRCC1 modification. To study the interactions of XRCC1 with DNA and proteins at the initial stages of BER, DNA duplexes containing a photoreactive group in the template strand opposite the damage were designed. DNA duplexes with 8-oxoguanine or dihydrothymine opposite the photoreactive group were recognized and cleaved by specific DNA glycosylases (OGG1 or NTH1, correspondingly), although the rate of oxidized base excision in the photoreactive structures was lower than in normal substrates. XRCC1 does not display any specificity in recognition of DNA duplexes with damaged bases compared to regular DNA. A photoreactive group opposite a synthetic apurinic/apyrimidinic (AP) site (3-hydroxy-2-hydroxymethyltetrahydrofuran) weakly influences the incision efficiency of AP site analog by APE1. In the absence of magnesium ions, i.e. when incision of AP sites cannot occur, APE1 and XRCC1 compete for DNA binding when present together. However, in the presence of magnesium ions the level of XRCC1 modification increased upon APE1 addition, since APE1 creates nicked DNA duplex, which interacts with XRCC1 more efficiently.  相似文献   

4.
DNA base flipping, which was first observed for the C5-cytosine DNA methyltransferase M. Hha I, results in a complete removal of the stacking interactions between the target base and its neighbouring bases. We have investigated whether duplex oligodeoxynucleotides containing the fluorescent base analogue 2-aminopurine can be used to sense DNA base flipping. Using M. Hha I as a paradigm for a base flipping enzyme, we find that the fluorescence intensity of duplex oligodeoxynucleotides containing 2-aminopurine at the target site is dramatically enhanced (54-fold) in the presence of M. Hha I. Duplex oligodeoxynucleotides containing 2-aminopurine adjacent to the target cytosine show little fluorescence increase upon addition of M. Hha I. These results clearly demonstrate that duplex oligodeoxynucleotides containing 2-aminopurine at the target site can serve as fluorescence probes for base flipping. Another enzyme hypothesized to use a base flipping mechanism is the N6-adenine DNA methyltransferase M. Taq I. Addition of M. Taq I to duplex oligodeoxynucleotides bearing 2-aminopurine at the target position, also results in a strongly enhanced fluorescence (13-fold), whereas addition to duplex oligodeoxynucleotides containing 2-aminopurine at the 3'- or 5'-neighbouring position leads only to small fluorescence increases. These results give the first experimental evidence that the adenine-specific DNA methyltransferase M. Taq I also flips its target base.  相似文献   

5.
During DNA synthesis, base stacking and Watson-Crick (WC) hydrogen bonding increase the stability of nascent base pairs when they are in a ternary complex. To evaluate the contribution of base stacking to the incorporation efficiency of dNTPs when a DNA polymerase encounters an abasic site, we varied the penultimate base pairs (PBs) adjacent to the abasic site using all 16 possible combinations. We then determined pre-steady-state kinetic parameters with an RB69 DNA polymerase variant and solved nine structures of the corresponding ternary complexes. The efficiency of incorporation for incoming dNTPs opposite an abasic site varied between 2- and 210-fold depending on the identity of the PB. We propose that the A rule can be extended to encompass the fact that DNA polymerase can bypass dA/abasic sites more efficiently than other dN/abasic sites. Crystal structures of the ternary complexes show that the surface of the incoming base was stacked against the PB's interface and that the kinetic parameters for dNMP incorporation were consistent with specific features of base stacking, such as surface area and partial charge-charge interactions between the incoming base and the PB. Without a templating nucleotide residue, an incoming dNTP has no base with which it can hydrogen bond and cannot be desolvated, so that these surrounding water molecules become ordered and remain on the PB's surface in the ternary complex. When these water molecules are on top of a hydrophobic patch on the PB, they destabilize the ternary complex, and the incorporation efficiency of incoming dNTPs is reduced.  相似文献   

6.
The nucleotide excision repair of certain bulky DNA lesions is abrogated in some specific non-canonical DNA base sequence contexts, while the removal of the same lesions by the nucleotide excision repair mechanism is efficient in duplexes in which all base pairs are complementary. Here we show that the nucleotide excision repair activity in human cell extracts is moderate-to-high in the case of two stereoisomeric DNA lesions derived from the pro-carcinogen benzo[a]pyrene (cis- and trans-B[a]P-N 2-dG adducts) in a normal DNA duplex. By contrast, the nucleotide excision repair activity is completely abrogated when the canonical cytosine base opposite the B[a]P-dG adducts is replaced by an abasic site in duplex DNA. However, base excision repair of the abasic site persists. In order to understand the structural origins of these striking phenomena, we used NMR and molecular spectroscopy techniques to evaluate the conformational features of 11mer DNA duplexes containing these B[a]P-dG lesions opposite abasic sites. Our results show that in these duplexes containing the clustered lesions, both B[a]P-dG adducts adopt base-displaced intercalated conformations, with the B[a]P aromatic rings intercalated into the DNA helix. To explain the persistence of base excision repair in the face of the opposed bulky B[a]P ring system, molecular modeling results suggest how the APE1 base excision repair endonuclease, that excises abasic lesions, can bind productively even with the trans-B[a]P-dG positioned opposite the abasic site. We hypothesize that the nucleotide excision repair resistance is fostered by local B[a]P residue—DNA base stacking interactions at the abasic sites, that are facilitated by the absence of the cytosine partner base in the complementary strand. More broadly, this study sets the stage for elucidating the interplay between base excision and nucleotide excision repair in processing different types of clustered DNA lesions that are substrates of nucleotide excision repair or base excision repair mechanisms.  相似文献   

7.
2-Aminopurine (2-AP), a fluorescent analog of adenine, has been widely used as a probe for local DNA conformation, since excitation and emission characteristics and fluoresence lifetimes of 2-AP vary in a sequence-dependent manner within DNA. Using steady-state and time-resolved fluorescence techniques, we report that 2-AP appears to be unusually stacked in the internal positions of ATAT and TATA in duplex DNA. The excitation wavelength maxima for 2-AP within these contexts were red shifted, indicating reduced solvent exposure for the fluorophore. Furthermore, in these contexts, 2-AP fluorescence was resistant to acrylamide-dependent collisional quenching, suggesting that the fluorophore is protected by its stacked position within the duplex. This conclusion was further reinforced by the presence of a secondary peak at 275 nm in the fluorescence excitation spectra that is indicative of efficient excitation energy transfer from nearby non-fluorescent DNA bases. Fluorescence anisotropy decay and internal angular ‘wobbling’ motion measurements of 2-AP within these alternating AT contexts were also consistent with the fluorophore being highly constrained and immobile within the base stack. When these fluorescence characteristics are compared with those of 2-AP within other duplex DNA sequence contexts, they are unique.  相似文献   

8.
Gu F  Xi Z  Goldberg IH 《Biochemistry》2000,39(16):4881-4891
Bulge structures in nucleic acids are of general biological significance and are potential targets for therapeutic drugs. It has been shown in a previous study that thiol-activated neocarzinostatin chromophore is able to cleave duplex DNA selectively at a position opposite a single unpaired cytosine or thymine base on the 3' side. In this work, we studied in greater detail the nature of this type of cleavage and the basis for the selectivity of the bulge site cleavage over the usual strand cleavage at a T site in the duplex region by using duplexes containing an internal control and a bulge, which is composed of different types and number of bases. Experimental results indicated that the bulge-induced cleavage is initiated by 5' hydrogen abstraction and is greatly affected by the base composition of the bulge. A single-base bulge, especially when containing a purine, yields higher efficiency and greater selectivity for the bulge-induced cleavage. In particular, a single adenine base gives rise to the highest cleavage yield and provides over 20 times greater selectivity for cleavage at the bulge site compared with the internal control site in duplexes. The binding dissociation constants of postactivated drug for a stem-loop structure containing a one- or two-base bulge in the stem, measured by fluorescence quenching, show that the binding is about 3-4 times stronger for bulge-containing duplexes than for perfect hairpin duplexes. For RNA.DNA hybrid duplexes, where the DNA is the target strand and the RNA is the bulge-containing strand, bulge-induced cleavage was observed, although at low yield. On the other hand, when RNA is the nonbulge strand, no bulge-induced cleavage was found. When the reaction is performed in the absence of oxygen, the major product is a covalent adduct, and it is at the same location as the cleavage site under aerobic conditions.  相似文献   

9.
HU, a nonspecific histone-like DNA binding protein, participates in a number of genomic events as an accessory protein and forms multiple complexes with DNA. The HU-DNA binding interaction was characterized by fluorescence, generated with the guanosine analogue 3-methyl-8-(2-deoxy-beta-D-ribofuranosyl)isoxanthopterin (3-MI) directly incorporated into DNA duplexes. The stoichiometry and equilibrium binding constants of complexes formed between HU and 13 and 34 bp DNA duplexes were determined using fluorescence anisotropy and analytical ultracentrifugation. These measurements reveal that three HU molecules bind to the 34 bp duplexes, while two HU molecules bind to the 13 bp duplex. The data are well described by an independent binding site model, and the association constants for the first binding event for both duplexes are similar (approximately 1 x 10(6) M(-1)), indicating that HU binding affinity is independent of duplex length. Further analysis of the binding curves in terms of a nonspecific binding model is indicative that HU binding to DNA exhibits little to no cooperativity. The fluorescence intensity also increases upon HU binding, consistent with decreased base stacking and increased solvent exposure of the 3-MI fluorescence probe. These results are suggestive of a local bending or unwinding of the DNA. On the basis of these results we propose a model in which bending of DNA accompanies HU binding. Up to five complex bands are observed in gel mobility shift assays of HU binding to the 34 bp duplexes. We suggest that protein-induced bending of the DNA leads to the observation of complexes in the gel, which have the same molecular weight but different relative mobilities.  相似文献   

10.
Universal bases hybridize with all other natural DNA or RNA bases, and have applications in PCR and sequencing. We have analysed by nuclear magnetic resonance spectroscopy the structure and dynamics of three DNA oligonucleotides containing the universal base analogues 5-nitroindole and 5-nitroindole-3-carboxamide. In all systems studied, both the 5-nitroindole nucleotide and the opposing nucleotide adopt a standard anti conformation and are fully stacked within the DNA duplex. The 5-nitroindole bases do not base pair with the nucleotide opposite them, but intercalate between this base and an adjacent Watson–Crick pair. In spite of their smooth accommodation within the DNA double-helix, the 5-nitroindole-containing duplexes exist as a dynamic mixture of two different stacking configurations exchanging fast on the chemical shift timescale. These configurations depend on the relative intercalating positions of the universal base and the opposing base, and their exchange implies nucleotide opening motions on the millisecond time range. The structure of these nitroindole-containing duplexes explains the mechanism by which these artificial moieties behave as universal bases.  相似文献   

11.
The incorporation of the bicyclic cytosine analogue 7,8-dihydropyrido[2,3-d]pyrimidin-2-one (X) into DNA duplexes results in a significant enhancement of their stability (3–4 K per modification). To establish the effects of X on the local hydrogen-bonding and base stacking interactions and the overall DNA conformation, and to obtain insights into the correlation between the structure and stability of X-containing DNA duplexes, the crystal structures of [d(CGCGAATT-X-GCG)]2 and [d(CGCGAAT-X-CGCG)]2 have been determined at 1.9–2.9 Å resolutions. In all of the structures, the analogue X base pairs with the purine bases on the opposite strands through Watson–Crick and/or wobble type hydrogen bonds. The additional ring of the X base is stacked on the thymine bases at the 5′-side and overall exhibits greatly enhanced stacking interactions suggesting that this is a major contribution to duplex stabilization.  相似文献   

12.
The use of the DNA duplex as a supramolecular scaffold is an established approach for the assembly of chromophore aggregates. In the absence of detailed structural insight, the characterization of thus assembled oligochromophores is, today, largely based on solution-phase spectroscopy. Here, we describe the crystal structures of three DNA-organized chromophore aggregates. DNA hybrids containing non-nucleosidic pyrene and phenanthrene building blocks were co-crystallized with the recently described binding domain of the restriction enzyme BpuJI. Crystal structures of these complexes were determined at 2.7, 1.9 and 1.6 Å resolutions. The structures reveal aromatic stacking interactions between pyrene and/or phenanthrene units within the framework of the B-DNA duplex. In hybrids containing a single modification in each DNA strand near the end of the duplex, the two polyaromatic hydrocarbons are engaged in a face-to-face stacking orientation. Due to crystal packing and steric effects, the terminal GC base pair is disrupted in all three crystal structures, which results in a non-perfect stacking arrangement of the aromatic chromophores in two of the structures. In a hybrid containing a total of three pyrenes, crystal lattice induced end-to-end stacking of individual DNA duplexes leads to the formation of an extended aromatic π-stack containing four co-axially arranged pyrenes. The aromatic planes of the stacked pyrenes are oriented in a parallel way. The study demonstrates the value of co-crystallization of chemically modified DNA with the recombinant binding domain of the restriction enzyme BpuJI for obtaining detailed structural insight into DNA-assembled oligochromophores.  相似文献   

13.
An improved method for the chemical synthesis of oligodeoxynucleotides containing 5 R -5,6-dihydro-5-hydroxythymidine (1) at a defined site is reported. UV melting studies carried out on duplexes containing1synthesized in this manner correlate with previously reported enzyme inhibition experiments, as well as computational studies. The melting experiments suggest that1destabilizes duplex DNA, but that the lesion preferentially base pairs to deoxyadenosine. These experiments also suggest that the presence of1in a duplex disrupts base pairing at the 5'-adjacent nucleotide and results in the thermally preferred misincorporation of purines opposite the 5'-deoxyadenosine stacked above 1 at this position. Despite the disruptions in base stacking, the UV melting experiments and enzymatic ligation/electrophoretic migration assays are consistent with the predicted macroscopic duplex structure containing intrahelical nucleotides.  相似文献   

14.
Liu JD  Zhao L  Xia T 《Biochemistry》2008,47(22):5962-5975
Unpaired bases at the end of an RNA duplex (dangling ends) can stabilize the core duplex in a sequence-dependent manner and are important determinants of RNA folding, recognition, and functions. Using 2-aminopurine as a dangling end purine base, we have employed femtosecond time-resolved fluorescence spectroscopy, combined with UV optical melting, to quantitatively investigate the physical and structural nature of the stacking interactions between the dangling end bases and the terminal base pairs. A 3'-dangling purine base has a large subpopulation that stacks on the guanine base of the terminal GC or UG pair, either intrastrand or cross-strand depending on the orientation of the pair, thus providing stabilization of different magnitudes. On the contrary, a 5'-dangling purine base only has a marginal subpopulation that stacks on the purine of the same strand (intrastrand) but has little cross-strand stacking. Thus a 5'-dangling purine does not provide significant stabilization. These stacking structures are not static, and a dangling end base samples a range of stacked and unstacked conformations with respect to the terminal base pair. Femtosecond time-resolved anisotropy decay reveals certain hindered base conformational dynamics that occur on the picosecond to nanosecond time scales, which allow the dangling base to sample these substates. When the dangling purine is opposite to a U and is able to form a potential base pair at the end of the duplex, there is an interplay of base stacking and hydrogen-bonding interactions that depends on the orientation of the base pair relative to the adjacent GC pair. By resolving these populations that are dynamically exchanging on fast time scales, we elucidated the correlation between dynamic conformational distributions and thermodynamic stability.  相似文献   

15.
The ability of conjugated minor groove binding (MGB) residues to stabilize nucleic acid duplexes was investigated by synthesis of oligonucleotides bearing a tethered dihydropyrroloindole tripeptide (CDPI3). Duplexes bearing one or more of these conjugated MGBs were varied by base composition (AT- or GC-rich oligonucleotides), backbone modifications (phosphodiester DNA, 2'-O-methyl phosphodiester RNA or phosphorothioate DNA) and site of attachment of the MGB moiety (5'- or 3'-end of either duplex strand). Melting temperatures of the duplexes were determined. The conjugated CDPI3 residue enhanced the stability of virtually all duplexes studied. The extent of stabilization was backbone and sequence dependent and reached a maximum value of 40-49 degrees C for d(pT)8. d(pA)8. Duplexes with a phosphorothioate DNA backbone responded similarly on CDPI3 conjugation, although they were less stable than analogous phosphodiesters. Modest stabilization was obtained for duplexes with a 2'-O-methyl RNA backbone. The conjugated CDPI3 residue stabilized GC-rich DNA duplexes, albeit to a lesser extent than for AT-rich duplexes of the same length.  相似文献   

16.
Abasic sites are common DNA lesions resulting from spontaneous depurination and excision of damaged nucleobases by DNA repair enzymes. However, the influence of the local sequence context on the structure of the abasic site and ultimately, its recognition and repair, remains elusive. In the present study, duplex DNAs with three different bases (G, C or T) opposite an abasic site have been synthesized in the same sequence context (5′-CCA AAG6 XA8C CGG G-3′, where X denotes the abasic site) and characterized by 2D NMR spectroscopy. Studies on a duplex DNA with an A opposite the abasic site in the same sequence has recently been reported [Chen,J., Dupradeau,F.-Y., Case,D.A., Turner,C.J. and Stubbe,J. (2007) Nuclear magnetic resonance structural studies and molecular modeling of duplex DNA containing normal and 4′-oxidized abasic sites. Biochemistry, 46, 3096–3107]. Molecular modeling based on NMR-derived distance and dihedral angle restraints and molecular dynamics calculations have been applied to determine structural models and conformational flexibility of each duplex. The results indicate that all four duplexes adopt an overall B-form conformation with each unpaired base stacked between adjacent bases intrahelically. The conformation around the abasic site is more perturbed when the base opposite to the lesion is a pyrimidine (C or T) than a purine (G or A). In both the former cases, the neighboring base pairs (G6-C21 and A8-T19) are closer to each other than those in B-form DNA. Molecular dynamics simulations reveal that transient H-bond interactions between the unpaired pyrimidine (C20 or T20) and the base 3′ to the abasic site play an important role in perturbing the local conformation. These results provide structural insight into the dynamics of abasic sites that are intrinsically modulated by the bases opposite the abasic site.  相似文献   

17.
yDNA is a base‐modified nucleic acid duplex containing size‐expanded nucleobases. Base‐modified nucleic acids could expand the genetic alphabet and thereby enhance the functional potential of DNA. Unrestrained 100 ns MD simulations were performed in explicit solvent on the yDNA NMR sequence [5′(yA T yA yA T yA T T yA T)2] and two modeled yDNA duplexes, [5′(yC yC G yC yC G G yC G G)2] and [(yT5′ G yT A yC yG C yA yG T3′)?(yA5′ C T C yG C G yT A yC A3′)]. The force field parameters for the yDNA bases were derived in consistent with the well‐established AMBER force field. Our results show that DNA backbone can withstand the stretched size of the bases retaining the Watson‐Crick base pairing in the duplexes. The duplexes retained their double helical structure throughout the simulations accommodating the strain due to expanded bases in the backbone torsion angles, sugar pucker and helical parameters. The effect of the benzo‐expansion is clearly reflected in the extended C1′‐C1′ distances and enlarged groove widths. The size expanded base modification leads to reduction in base pair twist resulting in larger overlapping area between the stacked bases, enhancing inter and intra strand stacking interactions in yDNA in comparison with BDNA. This geometry could favour enhanced interactions with the groove binders and DNA binding proteins., 2016. © 2015 Wiley Periodicals, Inc. Biopolymers 105: 55–64, 2016  相似文献   

18.
The DNA duplexes shown below, with D indicating deoxyribose aldehyde absic sites and numbering from 5' to 3', have been investigated by NMR. The 31P and 31P-1H correlation data indicate [formula: see text] that the backbones of these duplex DNAs are regular. One- and two-dimensional 1H NMR data indicate that the duplexes are right-handed and B-form. Conformational changes due to the presence of the abasic site extend to the two base pairs adjacent to the lesion site with the local conformation of the DNA being dependent on whether the abasic site is in the alpha or beta configuration. The aromatic base of residue A17 in the position opposite the abasic site is predominantly stacked in the helix as is G17 in the analogous sample. Imino lifetimes of the AT base pairs are much longer in samples with an abasic site than in those containing a Watson-Crick base pair. The conformational and dynamical properties of the duplex DNAs containing the naturally occurring aldehyde abasic site are different from those of duplex DNAs containing a variety of analogues of the abasic site.  相似文献   

19.
Oligonucleotides containing 2-aminopurine (2-AP) in place of G or A in the recognition site of EcoRII (CCT/AGG) or SsoII (CCNGG) restriction endonucleases have been synthesized in order to investigate the specific interaction of DNA with these enzymes. Physicochemical properties (CD spectra and melting behaviour) have shown that DNA duplexes containing 2-aminopurine exist largely in a stable B-like form. 2-Aminopurine base paired with cytidine, however, essentially influences the helix structure. The presence of a 2-AP-C mismatch strongly reduces the stability of the duplexes in comparison with the natural double strand, indicated by a biphasic melting behaviour. SsoII restriction endonuclease recognizes and cleaves the modified substrate with a 2-AP-T mismatch in the centre of the recognition site, but it does not cleave the duplexes containing 2-aminopurine in place of inner and outer G, or both. EcoRII restriction endonuclease does not cleave duplexes containing 2-aminopurine at all. The two-substrate mechanism of EcoRII-DNA interaction, however, allows hydrolysis of the duplex containing 2-aminopurine in place of adenine in the presence of the canonical substrate.  相似文献   

20.
The fluorescence of 2-aminopurine ((2)A)-substituted duplexes (contained in the GATC target site) was investigated by titration with T4 Dam DNA-(N6-adenine)-methyltransferase. With an unmethylated target ((2)A/A duplex) or its methylated derivative ((2)A/(m)A duplex), T4 Dam produced up to a 50-fold increase in fluorescence, consistent with (2)A being flipped out of the DNA helix. Though neither S-adenosyl-L-homocysteine nor sinefungin had any significant effect, addition of substrate S-adenosyl-L-methionine (AdoMet) sharply reduced the Dam-induced fluorescence with these complexes. In contrast, AdoMet had no effect on the fluorescence increase produced with an (2)A/(2)A double-substituted duplex. Since the (2)A/(m)A duplex cannot be methylated, the AdoMet-induced decrease in fluorescence cannot be due to methylation per se. We propose that T4 Dam alone randomly binds to the asymmetric (2)A/A and (2)A/(m)A duplexes, and that AdoMet induces an allosteric T4 Dam conformational change that promotes reorientation of the enzyme to the strand containing the native base. Thus, AdoMet increases enzyme binding-specificity, in addition to serving as the methyl donor. The results of pre-steady-state methylation kinetics are consistent with this model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号