首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phytopiankton abundance. species composition and primary productionof the Gulf of Naples were investigated during an autumn bloomin November 1985. Hydrographic data and surface phytoplanktonsamples were collected during a 3 day cruise, whereas investigationson in situ primary production and phytoplankton vertical distributionwere conducted from a second boat on three different dates.A coast-offshore gradient was recorded for most of the chemicaland biological parameters analysed. At stations closer to thecoast, which were affected by land run-off, phytoplankton populationsattained concentrations of 2.5 106 cells l–1 with amarked dominance of diatoms belonging to the genera Thalassiosiraand Chaetoceros. The most striking character of the system wasa remarkably high carbon assimilation rate (up to 1.04 g C m–2day–2) at stations closer to the coast. The causativemechanism for this bloom appeared to be land-derived nutrientenrichment, possibly enhanced by autumn rains, followed by aperiod of favourable meteorological conditions, which occursrecurrently in the region for a brief period around November,known locally as ‘St Martin's Summer’. We hypothesizethat a similar mechanism can stimulate phytoplankton growthmore than once every year. since high-stability penods followingmeteoro logical perturbations can occur several times in temperateregions of the northern hemisphere in autumn.  相似文献   

2.
The abundance and biomass of the large heterotrophic dinoflagellateNoctiluca scintillans, together with the changes in its potentialprey items, were monitored in the Seto Inland Sea, Japan, duringsummer 1997 (17 July-11 August). Growth and grazing rates ofNscintillans fed natural plankton populations were also measuredeight and seven times, respectively, during the survey period.The abundance and biomass of N scintillans averaged over thewater column (19 m) were in the range 1–345 cells 1–1(temporalaverage = 93 cell1–1) and 0.1–49.6 µg C l–1(temporalaverage = 13.8 µg C l–1; three times higher thanthat of calanoid copepods during the same period). Noctilucascintillans populations followed the changes in phytoplankton:N.scintillans biomass was increasing during the period of diatomblooms and was at a plateau or decreasing during periods oflow chlorophyll a. The growth rates of N.scintillans (µ)were also consistent with the wax and wane of the N.scintillanspopulation: N.scintillans showed highest growth rates duringdiatom blooms. A simple relationship between µ and chlorophylla concentration was established, and the production of N.scintillanswas estimated using this relationship and the measured biomass.The estimated production averaged over the water column wasin the range >0.1–5.2 µg C l–1 day–1(temporalaverage = 1.4 µg C l–1 day–1; 64% of the productionof calanoid copepods during the same period). Diatom clearancerates by N.scintillans were in the range 0.10–0.35 mlcell–1 day–1, and the phytoplankton population clearanceby N.scintillans was >12% day–1. Thus, although thefeeding pressure of N.scintillans on phytoplankton standingstock was low, N.scintillans was an important member of themesozooplank-ton in terms of biomass and production in the SetoInland Sea during summer.  相似文献   

3.
The impact of grazing by natural assemblages of microzooplanktonwas estimated in an upwelling area (Concepción, Chile)during the non-upwelling season in 2003 and 2004. Seawater dilutionexperiments using chlorophyll a (Chl a) as a tracer were usedto estimate daily rates of phytoplankton growth and microzooplanktongrazing. Initial Chl a concentrations ranged from 0.4 to 1.4mg Chl a m–3 and phytoplankton prey biomass and abundancewere numerically dominated by components <20 µm. Phytoplanktongrowth and microzooplankton grazing rates were 0.19–0.25day–1 and 0.26–0.52 day –1, respectively.These results suggest that microzooplankton exert a significantremoval of primary production (>100%) during the non-upwellingperiod.  相似文献   

4.
The fecundity and somatic growth rates of Calanus agulhensisand Calanoides carinatus, the dominant large calanoid copepodsin the southern Benguela upwelling system, as well as the fecundityof several other common copepods, were measured between Septemberand March of 1993/94 and 1994/95. Mean egg production of mostcopepods was low at >30 eggs female-1 day-1 {Calanoides carinatus23.7, Calanus agulhensis 19.0, Neocalanus tonsus 16.1 and Rhincalanusnasutus 26.1), whereas the mean fecundity of Centropages brachiatuswas significantly greater (83.6 eggs female–1 day-1).This study also presents the first comprehensive field estimatesof the fecundity of Nanno-calanus minor (mean: 26.1 eggs female–1day–1, range: 0.0–96.2 eggs female–1 day–1)and of somatic growth of N6 and all copepodite stages of Calanoidescarinatus (decreasing from 0.58 day–1 for N6 to 0.04 day–1for C5). Somatic growth rates of Calanus agulhensis also declinedwith age: from 0.57 day1 for N6 to 0.09 day1 for C5. Data ongrowth rates were used to assess the relative importance offood [as measured by total chlorophyll (Chi) a concentration],phytoplankton cell size (proportion of cells >10 µm)and temperature to the growth of copepods. Multiple regressionresults suggested that fecundity and somatic growth rates werepositively related to both Chi a concentration and phytoplanktoncell size, but not to temperature. Although it was not possibleto separate the effects of Chi a concentration and phytoplanktoncell size, data from previous laboratory experiments suggestthat copepod growth is not limited by small cells per se, butby the low Chi a concentrations that are associated with theseparticles in the field. Despite growth not being directly relatedto temperature, a dome-shaped relationship was evident in somespecies, with slower growth rates at cool (<13°C) andwarm (>18°C) temperatures. The shape of this relationshipmirrors that of Chi a versus temperature, where poor Chi a concentrationsare associated with cool and warm temperatures. It is concludedthat the effect of food limitation on growth of copepods outweighsthat of temperature in the southern Benguela region. Sourcesof variability in relationships between growth and Chi a concentrationare discussed.  相似文献   

5.
Seventeen size-fractionation experiments were carried out duringthe summer of 1979 to compare biomass and productivity in the< 10, <8 and <5 µm size fractions with that ofthe total phytoplankton community in surface waters of NarragansettBay. Flagellates and non-motile ultra-plankton passing 8 µmpolycarbonate filters dominated early summer phytoplankton populations,while diatoms and dinoflagellates retained by 10 µm nylonnetting dominated during the late summer. A significant numberof small diatoms and dinoflagellates were found in the 10–8µm size fraction. The > 10 µm size fraction accountedfor 50% of the chlorophyll a standing crop and 38% of surfaceproduction. The <8 µm fraction accounted for 39 and18% of the surface biomass and production. Production by the< 8 µm fraction exceeded half of the total communityproduction only during a mid-summer bloom of microflagellates.Mean assimilation numbers and calculated carbon doubling ratesin the <8 µm (2.8 g C g Chl a–1 h–1; 0.9day–1)and<5 µm(1.7 g C g Chl a–1h–1; 0.5day–1)size fractions were consistently lower than those of the totalpopulation (4.8 g C g Chl a–1 h–1; 1.3 day–1)and the <10 µm size fraction (5.8 g C g Chl a–1h–1; 1.4 day –1). The results indicate that smalldiatoms and dinoflagellates in fractionated phytoplankton populationscan influence productivity out of proportion to their numbersor biomass. 1Present address: Australian Institute of Marine Science, P.M.B.No. 3, Townsville M.S.O., Qld. 4810, Australia.  相似文献   

6.
Sinking rates of heterogeneous, temperate phytoplankton populations   总被引:1,自引:0,他引:1  
Throughout the summer of 1978, the sinking rates of phytoplanktonwithin the Controlled Experimental Ecosystems (CEE's) were monitoredusing a technique based upon measurement of the transit timeof radioactively (14C) labeled cells. The experimental frameworkof FOODWEB 1 offered an unprecedented opportunity to documentthe sinking rates of heterogeneous phytoplankton of diversetaxonomic composition, growing under a variety of nutrient regimes;the absence of advective exchange in the CEE's provided knowledgeof the preconditioning history of the phytoplankton sampledat any given time. Sinking rates of whole phytoplankton assemblages (not size-fractioned)ranged from 0.32 – 1.69 m·day–1; the averagerate (± s.d.) observed was 0.64 ± 0.31 m·day–1.The most notable deviations from the mean value occurred whenthe population size distribution and taxonomic composition shifteddue to blooms. The relationship between phytoplankton sinkingand ambient nutrient levels was studied by following the ratesof a given size fraction (8–53 µm) for ten daysfollowing nutrient enrichment of a CEE. Over this time sinkingrates ranged from 1.08– 1.53 m·day–1; decreasedrates occurred after nutrification, yet over the course of theentire trial sinking rates were not significantly (p >0.05)correlated to the ambient levels of any single nutrient species. The sinking rate implications of spore formation were also studied,and showed that sinking rates of Chaetoceros constrictus andC. socialis spores (2.75 ± 0.61 m·day–1)were ca 5-fold greater than rates measured when the vegetativestages of these species dominated the population, reflectingthe influence of physiological mechanisms in controlling phytoplanktonbuoyancy. An example of the potential influence of colony formation uponbuoyancy was noted in observations of C. socialis which occasionallywas found to exist in large spherical configurations made ofcoiled cell chains and having low (0.40 m·day–1)sinking rates. A hydrodynamic rationale is presented to showhow such a colony together with enveloped water may behave asa unit particle having lower excess density, and therefore lowobserved sinking rate, despite its conspicuously large size. Overall, sinking rates were not significantly correlated withany of the measured nutrient or photic parameters. There were,however, trials and comparisons which showed evidence for: (1)higher sinking rates in populations dominated by large cells,(2) decreased sinking rates after nutrient enrichment, and (3)buoyancy response to light levels. It is suggested that correlationof sinking rates with synoptic environmental measurements atany given time is not explicit because the associations mayinvoke lag times of physiological response. The interpretationmade from these findings is that the preconditioning historyof the population, rather than the prevailing conditions atthe time of a given measurement, is most closely associatedwith population buoyancy modifications.  相似文献   

7.
Red tides are conspicuous in the upwelling system of Galicia(NW Iberian Peninsula). At present, there are conflicting hypothesesabout the generation site of these phytoplankton assemblages.It is interesting to know whether the rias can be sites of redtide formation or if they act only as accumulation sites ofpopulations advected from shelf waters. A study in the Ra deVigo, carried out during late September 1990, showed the developmentof a red tide assemblage, composed of Alexandrium affinis, Ceraiiumfusus and Gymnodinium catenaium, during a 2 week upwelling-downwellingcycle. Growth occurred at the bottom of the thermocline-topof the nutricline. Above this assemblage, a diatom assemblage(large diatoms) was blooming. Prior to the formation of thered tide, a subsurface chlorophyll maximum made up of smalldiatoms (Nilzschia f. seriaia, Chaeloceros socialis), smallflagellates (<30 µm) and small gymnodinid forms (<30µm) was observed. In the nutrient-depleted upper layer,several autotrophic and large heterotrophic dinoflagellatesdominated. It is suggested that the ratio between the velocityof upward water movement and the depth of the stratified upperlayer (flushing rate, day–1) is the critical parameterwhich triggers active phytoplankton growth. It can be concludedthat upward water velocities of {small tilde}2.5 m day–1and a stratified upper layer of 10 m depth (flushing rate 0.25day–1) are the main physical constraints for red tidedevelopment.  相似文献   

8.
Grazing on phytoplankton by the micro- and mesozooplankton communitieswas measured during four cruises in a shallow (1.5 m) productive(up to 6 g C m–2 day–1 estuary in the northern Gulfof Mexico. Grazing-induced mortality on phytoplankton was alwayshigh and >95% of the grazing was by the microzooplanktoncommunity The grazing contribution from the mesozooplanktoncommunity, comprised primarily of Acartia tonsa, is believedto be small because populations were kept low by predation andadvective losses. A simple model is developed to describe phytoplankton-zooplanktoninteractions in this estuary. Attempts to understand the distributionand abundance of phytoplankton in estuaries must include estimatesof grazer-induced mortality on the phytoplankton.  相似文献   

9.
Feeding and metabolism of the siphonophore Sphaeronectes gracilis   总被引:1,自引:0,他引:1  
The in situ predation rate of the siphonophore Sphaeronectesgracilis was estimated from gut content analysis of hand-collectedsiphonophores and from laboratory data on digestion rates ofprey organisms. At daytime prey densities of 0.25 copepods 1–1,S. gracilis was estimated to consume 8.1 – 15.4 prey day–1siphonophore–1. From data on abundances of siphonophoresand copepods, S. gracilis was estimated to consume 2–4%of the copepods daily. In laboratory experiments, ingestionrates averaged 13.8 prey day–1 siphonophore–1 atprey densities of 5 copepods 1–1 and 36.9 at 20 copeods1–1. This was equivalent to a specific ingestion rate(for both carbon and nitrogen) of –17% day–1 and45% day–1, respectively, while specific ingestion in situwas only 2% day–1. Ammonium excretion averaged 0.095 µg-atsiphonophore–1 day–1 at 5 prey 1–1, and 0.162at 20 prey 1–1. The specific respiration (carbon) andspecific excretion (nitrogen as ammonium) were calculated tobe 3% day–1 at the lower experimental food level, and5% day–1 at the higher food level. 1Contribution from the Catalina Marine Science Center No. 66. 2Present address: Dept. of Biology, University of Victoria,Victoria, B.C., Canada V8W 2Y2.  相似文献   

10.
The temporal and spatial variability in the quality and quantityof settling phytoplankton material in relation to concurrentprimary production was studied using sediment traps at threecoastal stations from a semi-enclosed bay (Pojo Bay) throughthe outer archipelago to the open Gulf of Finland. The fluxof settling phytoplankton was high (9.3 g C m–2period–1)in Pojo Bay, especially in spring, and lower in the archipelago(8.1 g C m–2 period–1) and open-sea area (5.2 gC m"2 period"1), although the primary production followed theopposite pattern. A large influx of allochthonous material intoPojo Bay in spring brought allochthonous phytoplankton cellsinto the traps, but limited primary production. Diatoms werethe most abundant settled phytoplankton at all stations, butthe species composition varied between Pojo Bay (Aulacoseiraspp., Rhizosolenia minima) and the outer stations (Skeletonemacostatum, Chaetoceros spp.)At the outer stations, migratingdinoflagellates (Peridiniella catenate) comprised part of thesettling material in spring. The high settling flux of the cyanophyteAphanizomenon flos-aquae is discussed. The species compositionof the phytoplankton assemblage influenced the proportion ofthe total organic carbon sedimentation that consisted of phytoplanktoncarbon.  相似文献   

11.
Results are presented of size-fractionated primary productionstudies conducted in the vicinity of the Subtropical Front (STF),an adjacent warm-core eddy, and in Sub-antarctic waters duringthe third South African Antarctic Marine Ecosystem Study (SAAMESIII) in austral winter (June/July) 1993. Throughout the investigation,total chlorophyll (Chl a) biomass and production were dominatedby small nano- and picophytoplankton. No distinct patterns intotal Chl a were evident. At stations (n = 7) occupied in thevicinity of the STF, total integrated biomass values rangedfrom 31 to 53 mg Chl a m–2. In the vicinity of the eddy,integrated biomass at the eddy edge (n = 3) ranged from 24 to54 mg Chl a m–2 and from 32 to 43 mg Chl a m–2 inthe eddy (n = 2). At the station occupied in the Sub-antarcticwaters, total integrated biomass was 43 mg Chl a m–2.Total daily integrated production was highest at stations occupiedin the vicinity of the STF and at the eddy edge. Here, totalintegrated production ranged from 150 to 423 mg C m–2day–1 and from 244 to 326mg C m–2 day–1, respectively.In the eddy centre, total integrated production varied between134 and 156 mg C m–2 day–1. At the station occupiedin the Sub-antarctic waters, the lowest integrated production(141 mg C m–2 day–1) during the entire survey wasrecorded. Availability of macronutrients did not appear to limittotal production. However, the low silicate concentrations duringthe survey may account for the predominance of small nano- andpicophytoplankton. Differences in production rates between theeddy edge and eddy core were related to water column stability.In contrast, at stations occupied in the vicinity of the STF,the control of phytoplankton production appears to be relatedto several processes, including water column stability and,possibly, iron availability.  相似文献   

12.
Grazing by microzooplankton on autotrophic and heterotrophicpicoplankton as well as >0.7 µm phytoplankton (as measuredby chlorophyll a) was quantified during July, August, October,January and April in the surface layer of Logy Bay, Newfoundland(47°38'14'N, 52°39'36'W). Rates of growth and grazingmortality of bacteria, Synechococcus and >0.7 µm phytoplanktonwere measured using the sea water dilution technique. Microzooplanktoningested 83–184, 96–366 and 64–118% of bacterial,Synechococcus and >0.7 µm phytoplankton daily potentialproduction, respectively and 34–111, 25–30 and 16–131%of bacterial, Synechococcus and >0.7 µm phytoplanktonstanding stocks, respectively. The trends in prey net growthrates followed the seasonal cycles of prey biomass, suggestingthat microzooplankton are important grazers in Newfoundlandcoastal waters. Ingestion was lowest during January and October(~2 µg C l–1 day–1) and highest in August(~20 µg C l–1 day–1). Aside from April when>0.7 µm phytoplankton represented the majority (~80%)of carbon ingested, bacterioplankton and <1 µm phytoplanktonrepresented most of the carbon ingested (~40–100%). Althoughmicrozooplankton have here-to-fore been unrecognized as an importantgrazer population in Newfoundland coastal waters, these resultssuggest that they play an important role in carbon flow withinthe pelagic food web, even at low temperatures in Logy Bay.  相似文献   

13.
The distinct patterns of stratification in the North Channeland stratified region of the western Irish Sea influence theseasonal abundance of phytoplankton. The 3–4 month productionseason in the stratified region was characterized by productionand biomass peaks in the spring (up to 2378 mg C m2 day–1and 178.4 mg chlorophyll m–2) and autumn (up to 1280 mgC m–2 day–1 and 101.9 mg chlorophyll m–2).Phytoplankton in the North Channel exhibited a short, late productionseason with a single summer (June/July) peak in production (4483mg Cm–2 day–1) and biomass (–160.6 mg chlorophyllm–2). These differences have little influence on copepoddynamics. Both regions supported recurrent annual cycles ofcopepod abundance with similar seasonal maxima (182.8–241.8103ind. m–2) and dominant species (Pseudocalanus elongatusand Acartia clausi). Specific rates of population increase inthe spring were 0.071 and 0.048 day1 for the North Channel andstratified region, respectively. Increased copepod abundancein the stratified region coincided with the spring bloom, andwas significantly correlated with chlorophyll standing stock.Increased copepod abundance preceded the summer production peakin the North Channel. This increase was not correlated withchlorophyll standing crop, suggesting that a food resource otherthan phytoplankton may be responsible for the onset of copepodproduction prior to the spring bloom. Hetero-trophic microplanktonas an alternative food source, and advection of copepods fromthe stratified region, are proposed as possible explanationsfor copepod abundance increasing in advance of the summer peakin primary production.  相似文献   

14.
In situ growth and development of Neocalanus flemingeri/plumchrusstage C1–C4 copepodites were estimated by both the artificial-cohortand the single-stage incubation methods in March, April andMay of 2001–2005 at 5–6°C. Results from thesetwo methods were comparable and consistent. In the field, C1–C4stage durations ranged from 7 to >100 days, dependent ontemperature and chlorophyll a (Chl a) concentration. Averagestage durations were 12.4–14.1 days, yielding an averageof 56 days to reach C5, but under optimal conditions stage durationswere closer to 10 days, shortening the time to reach C5 (fromC1) to 46 days. Generally, growth rates decreased with increasingstage, ranging from 0.28 day–1 to close to zero but weretypically between 0.20 and 0.05 day–1, averaging 0.110± 0.006 day–1 (mean ± SE) for single-stageand 0.107 ± 0.005 day–1 (mean ± SE) forartificial-cohort methods. Growth was well described by equationsof Michaelis–Menten form, with maximum growth rates (Gmax)of 0.17–0.18 day–1 and half saturation Chl a concentrations(Kchl) of 0.45–0.46 mg m–3 for combined C1–3,while Gmax dropped to 0.08–0.09 day–1 but Kchl remainedat 0.38–0.93 mg m–3 for C4. In this study, in situgrowth of N. flemingeri/plumchrus was frequently food limitedto some degree, particularly during March. A comparison withglobal models of copepod growth rates suggests that these modelsstill require considerable refinement. We suggest that the artificial-cohortmethod is the most practical approach to generating the multispeciesdata required to address these deficiencies.  相似文献   

15.
Planktonic primary production in the German Wadden Sea   总被引:8,自引:0,他引:8  
By combining weekly data of irradiance, attenuation and chlorophylla concentrations with photosynthesis (P) versus light intensity(E) curve characteristics, the annual cycle of planktonic primaryproduction in the estuarine part of the Northfrisian WaddenSea was computed for a 2 year period. Daily water column particulategross production ranged from 5 to 2200 mg C m–2 day–1and showed a seasonal pattern similar to chlorophyll a. Budgetcalculation yielded annual gross particulate primary productionsof 124 and 176 g C m–2 year–1 in 1995 and 1996,respectively. Annual amounts of phytoplankton respiration, calculatedaccording to a two-compartment model of Langdon [in Li,W.K.W.and Maestrini,S.Y. (eds), Measurement of Primary Productionfrom the Molecular to the Global Scale. International Councilfor the Exploration of the Sea, Copenhagen, 1993, pp. 20–36],and dissolved production in 1996, were both in the range of24–39 g C m–2 year–1. Annual total net productionwas thus very similar to particulate gross production (127 and177 g C m–2 year–1 in 1995 and 1996, respectively).Phytoplankton growth was low or even negative in winter. Inspring and summer, production/biomass (Pr/B) ratios varied from0.2 up to 1.7. Phytoplankton growth during the growth seasonalways surpassed average flushing time in the area, thus underliningthe potential of local phytoplankton bloom development in thispart of the Wadden Sea. The chlorophyll-specific maximum photosyntheticrate (PBmax) ranged from 0.8 to 9.9 mg C mg–1 Chl h–1and was strongly correlated with water temperature (r2 = 0.67).By contrast, there was no clear seasonal cycle in B, which rangedfrom 0.007 to 0.039 mg C mg–1 Chl h–1 (µmolphotons m–2 s–1)–1. Its variability was muchless than PBmax and independent of temperature. The magnitudeand part of the variability of PBmax and B are presumably causedby changes in species composition, as evidenced from the rangeof these parameters found among 10 predominant diatom speciesisolated from the Wadden Sea. The ratio of average light conditionsin the water column (Eav) to the light saturation parameterEk indicates that primary production in the Wadden Sea regionunder study is predominantly controlled by light limitationand that nutrient limitation was likely to occur for a few hoursper day only during 5 (dissolved inorganic nitrogen) to 10 (PO4,Si) weeks in the 2 year period investigated.  相似文献   

16.
Oikopleura longicauda occurred throughout the year in ToyamaBay, southern Japan Sea, and analysis of its size compositionand maturity revealed that reproduction was continuous overtheyear. Somatic growth production (Pg) varied with season from0.03 to 103 mg carbon (C) m–2day–1 (annual Pg 4.5g C m–2), and house production (Pe) from 0.11 to 266 mgC m–2 day–1 (annualPe 11.3 g C m–2). The annualPg/B ratio was 176. Compared with production data of some predominantzooplankton species in Toyama Bay, it is suggested that despitetheir smaller biomass, appendicularians are an important secondaryproducer.  相似文献   

17.
Ephyra larvae and small medusae (1.7–95 mm diameter, 0.01–350mg ash-free dry wt, AFDW) of the scyphozoan jellyfish Aureliaaurita were used in predation experiments with phytoplankton(the flagellate Isochrysis galbana, 4 µm diameter, {smalltilde}6 x 10–6 µg AFDW cell–1), ciliates (theoligotrich Strombidium sulcatum, 28 µm diameter, {smalltilde}2 x 10–3 µg AFDW), rotifers (Synchaeta sp.,0.5 µg AFDW individual–1) and mixed zooplankton(mainly copepods and cladocerans, 2.1–3.1 µg AFDWindividual–1). Phytoplankton in natural concentrations(50–200 µg C I–1) were not utilized by largemedusae (44–95 mm diameter). Ciliates in concentrationsfrom 0.5 to 50 individuals ml"1 were consumed by ephyra larvaeand small medusae (3–14 mm diameter) at a maximum predationrate of 171 prey day–1, corresponding to a daily rationof 0.42%. The rotifer Synchaeta sp., offered in concentrationsof 100–600 prey I–1, resulted in daily rations ofephyra larvae (2–5 mm diameter) between 1 and 13%. Mixedzooplankton allowed the highest daily rations, usually in therange 5–40%. Large medusae (>45 mm diameter) consumedbetween 2000 and 3500 prey organisms day"1 in prey concentrationsexceeding 100 I–1. Predation rate and daily ration werepositively correlated with prey abundance. Seen over a broadsize spectrum, the daily ration decreased with increased medusasize. The daily rations observed in high abundance of mixedzooplankton suggest a potential ‘scope for growth’that exceeds the growth rate observed in field populations,and this, in turn, suggests that the natural populations areusually food limited. The predicted predation rate at averageprey concentrations that are characteristic of neritic environmentscannot explain the maximum growth rates observed in field populations.It is therefore suggested that exploitation of patches of preyin high abundance is an important component in the trophodynamicsof this species. 1Present address: University of Bergen, Department of MarineBiology, N-5065 Blomsterdalen, Norway  相似文献   

18.
The impact of a cyclopoid copepod population on the protozoacommunity (two ciliate categories and Cryptomonas) was assessedweekly during the spring cohort of Cyclops vicinus (one monthduration) in hypereutrophic Lake Søbygård by insitu gradient experiments with manipulation of ambient zooplanktonabundance. As C.vicinus always made up >92% of the zooplanktonbiomass, the response of protozoa is assumed to be a resultof predation by the copepod. Significant effects of copepodbiomass on protozoa net population growth rates were obtainedin the four experiments. Copepod clearance rates were significantlyhigher on oligotrichs than on prostomatids and Cryptomonas butdeclined for all three protozoa categories during the firstthree weeks of the copepod cohort, probably because of the changein developmental instar composition of the copepod population.Grazing impact on protozoa at ambient copepod abundance wasconsiderable (range, 0.05–0.87 day–1) and could,together with the estimated reproductive potential of protozoans(range, –0.20–0.87 day–1), account for thedecline in abundance and biomass of protozoa during the cohortdevelopment. Carbon flow from the protozoa to C.vicinus (range,2.8–23.5 µg C l–1 day–1) documents thepresence of a trophic link between protozoa and the spring cohortof C.vicinus in Lake Søbygård.  相似文献   

19.
Fatty acid composition of phytoplankton photosynthetic productswas determined by a 13C tracer and gas chromatography-mass spectrometry(13C-GC-MS) method from August 1985 to June 1986 in Lake Biwa,Japan. The total fatty acid production rate varied from 2.8to 10.9 µg C l–1 day–1 at the water surfaceand accounted for 9.1–30% of photosynthetic productionof particulate organic carbon. A high contribution of fattyacid to the particulate organic carbon production rate was noticedduring winter time, and an increase in the fatty acid contributionresulted in an increase in the C/N value in the photosyntheticproducts. The fatty acid composition varied throughout the year,mainly depending on the seasonal change in the dominant phytoplanktonspecies. The contribution of polyunsaturated fatty acids tototal fatty acids was low during the summer period, probablydue to nitrogen limitation of phytoplankton growth.  相似文献   

20.
We describe zooplankton community structure and copepod eggproduction in the vicinity of the coastal boundary zone of theGreat Barrier Reef lagoon, Australia. The abundance and eggproduction rate of constituents of the zooplankton assemblagecharacteristic of the coastal zone rapidly increase subsequentto events such as flooding and upwelling. Our sampling spannedtwo summer monsoonal seasons, the first of which (1990-91) wasvery wet. The second monsoonal season (1991-92) was very dryand was characterized by intrusive upwelling events from theCoral Sea. Chlorophyll a concentrations did not rise in thewet year, probably because of light limitation, but did riseas a result of upwelling. Terrestrial run-off in the wet yearhad a greater apparent effect on zooplankton abundance patternsthan did upwelling in the dry year, except where coastal trappingallowed sufficient time for increases in zooplankton abundanceto occur. Egg production rates by the copepods Acrocalanus gibberand Acrocalanus gracilis showed haphazard spatial differences.Nitrogen-specific egg production ranged between 0.03 and 0.21day–1 for A.gibber, and between 0.13 and 0.41 day–1for A.gracilis. The egg production rate by A.gibber was foodlimited for most of the year and showed a poor correlation withtemperature. 3Present address: Department of Biological Sciences, FloridaTech, 150 W University Boulevard, Melbourne, FL 32901, USA  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号