首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary A sugar beet transformation method was developed using particle bombardment of short-term suspension cultures of a breeding line FC607. Highly embryogenic suspension cultures derived from leaf callus were bombarded with the uidA (gusA) reporter gene under the control of either the osmotin or proteinase inhibitor II gene promoter, and the npt II selectable marker gene. Transient uidA expression was visualized as 500–4000 blue units per 200 mg of bombarded cells 2 d after bombardment. Stably-transformed calluses were recovered on both kanamycin and paromomycin media. The greatest number of GUS (+) calluses was obtained when 50 or 100 mgl−1 of kanamycin was applied 2 d after transformation for 3–5 wk, followed by either no selection or reduced levels of the antibiotic. PCR analyses of the GUS (+) callus lines revealed the expected size fragment for uidA and npt II genes. Stable incorporation of the uidA gene into the genome was confirmed by Southern blot analyses. Several transformed embryos were detected by histochemical β-glucuronidase (GUS) staining.  相似文献   

2.
Gao C  Long D  Lenk I  Nielsen KK 《Plant cell reports》2008,27(10):1601-1609
Agrobacterium-mediated transformation and particle bombardment are the two most widely used methods for genetically modifying grasses. Here, these two systems are compared for transformation efficiency, transgene integration and transgene expression when used to transform tall fescue (Festuca arundinacea Schreb.). The bar gene was used as a selectable marker and selection during tissue culture was performed using 2 mg/l bialaphos in both callus induction and regeneration media. Average transformation efficiency across the four callus lines used in the experiments was 10.5% for Agrobacterium-mediated transformation and 11.5% for particle bombardment. Similar transgene integration patterns and co-integration frequencies of bar and uidA were observed in both gene transfer systems. However, while GUS activity was detected in leaves of 53% of the Agrobacterium transformed lines, only 20% of the bombarded lines showed GUS activity. Thus, Agrobacterium-mediated transformation appears to be the preferred method for producing transgenic tall fescue plants.  相似文献   

3.
Ten current European wheat varieties were transformed at efficiencies ranging from 1-17% (mean 4% across varieties) following modifications in particle bombardment and tissue culture procedures. All plants surviving phosphinothricin selection were screened for uidA and bar gene activity, and for the presence of marker gene sequences by PCR analysis. A minimum of 35% plant 'escape' frequency was achieved with selection on 4 mg l(-1) gluphosinate ammonium after shoot initiation. Mean co-transformation frequency with various genes-of-interest was 66%. The estimated number of insertions of the uidA gene in 25 lines were; 1-2 in 32%, 3-5 in 52%, and 6-8 in 16% of lines. In T(1) progenies, marker genes segregated in a Mendelian fashion in 50% of 39 lines analysed, as determined by transgene activity assays. Based on PCR analysis, it appeared that in some lines the occurrence of distorted segregation was due to poor transmission of the transgenes.  相似文献   

4.
Vigna mungo is one of the large-seeded grain legumes that has not yet been transformed. We report here for the first time the production of morphologically normal and fertile transgenic plants from cotyledonary-node explants inoculated with Agrobacterium tumefaciens carrying binary vector pCAMBIA2301, the latter of which contains a neomycin phosphotransferase ( nptII) gene and a beta-glucuronidase (GUS) gene ( uidA) interrupted with an intron. The transformed green shoots, selected and rooted on medium containing kanamycin, tested positive for nptII and uidA genes by polymerase chain reaction (PCR) analysis. These shoots were established in soil and grown to maturity to collect the seeds. Mechanical wounding of the explants prior to inoculation with Agrobacterium, time lag in regeneration due to removal of the cotyledons from explants and a second round of selection at the rooting stage were found to be critical for transformation. Analysis of T(0) plants showed the expression and integration of uidA into the plant genome. GUS activity in leaves, roots, flowers, anthers and pollen grains was detected by histochemical assay. PCR analysis of T(1) progeny revealed a Mendelian transgene inheritance pattern. The transformation frequency was 1%, and 6-8 weeks were required for the generation of transgenics.  相似文献   

5.
Leaf spot disease caused by Cercospora is responsible for crop and profitability losses in sugar beet crops in the US and worldwide. The cfp gene that encodes a protein that exports phytotoxic cercosporins from Cercospora was conjugally transferred to sugar beet using Rhizobium radiobacter (Agrobacterium tumefaciens), to improve Cercospora-induced leafspot resistance. Conditions for shoot regeneration were optimized to increase regeneration/transformation efficiencies. Low-light and room-temperature conditions were favorable to sugar beet regeneration without callus when cytokinin had been added to the tissue culture medium. Using this procedure adventitious shoots from leaf pieces were obtained in a simple, one-step regeneration procedure. T7, a cfp-transgenic clone verified by PCR with gene-specific primers, is being propagated for leaf spot disease resistance evaluation.  相似文献   

6.
Molecular approaches to sugar beet improvement will benefit from an efficient transformation procedure that does not rely upon exploitation of selectable marker genes such as those which confer antibiotic or herbicide resistance upon the transgenic plants. The expression of the green fluorescent protein (GFP) signal has been investigated during a program of research that was designed to address the need to increase the speed and efficiency of selection of sugar beet transformants. It was envisaged that the GFP reporter could be used initially as a supplement to current selection regimes in order to help eliminate “escapes” and perhaps eventually as a replacement marker in order to avoid the public disquiet associated with antibiotic/herbicide-resistance genes in field-released crops. The sgfp-S65T gene has been modified to have a plant-compatible codon usage, and a serine to threonine mutation at position 65 for enhanced fluorescence under blue light. This gene, under the control of the CaMV 35S promoter, was introduced into sugar beet via Agrobacterium-mediated transformation. Early gene expression in cocultivated sugar beet cultures was signified by green fluorescence several days after cocultivation. Stably transformed calli, which showed green fluorescence at a range of densities, were obtained at frequencies of 3–11% after transferring the inoculated cultures to selection media. Cocultivated shoot explants or embryogenic calli were regularly monitored under the microscope with blue light when they were transferred to media without selective agents. Green fluorescent shoots were obtained at frequencies of 2–5%. It was concluded that the sgfp-S65T gene can be used as a vital marker for noninvasive screening of cells and shoots for transformation, and that it has potential for the development of selectable marker-free transgenic sugar beet.  相似文献   

7.
Summary Development of an efficient transformation method for recalcitrant crops such as sugar beet (Beta vulgaris L.) depends on identification of germplasm with relatively high regeneration potential. Individual plants of seven sugar beet breeding lines were screened for their ability to form adventitious shoots on leaf disk callus. Disks were excised from the first pair of true leaves of 3-wk-old seedlings or from partially expanded leaves of 8-mo.-old plants and cultured on medium with 4.4 μM 6-benzylaminopurine for 10 wk. At 5 wk of culture, friable calluses and adventitious shoots began to develop. Rates of callus and shoot formation varied between breeding lines and between individual plants of the same line. Line FC607 exhibited the highest percentage (61%) of plants that regenerated shoots on explants. Among the plants with a positive shoot regeneration response, line FC607 also had the highest mean number (8.3±1.1) of shoots per explant. Individual plants within each line exhibited a wide range of percentages of explants that regenerated shoots. A similar variation was observed in the number of shoots that regenerated per explant of an individual plant. No loss of regeneration potential was observed on selected plants maintained in the greenhouse for 3 yr. Regenerated plants exhibited normal phenotypes and regeneration abilities comparable to the respective source plants. Based on our results, it is imperative to screen a large number of individual plants within sugar beet breeding lines in order to identify the high regenerators for use in molecular breeding and improvement programs.  相似文献   

8.
Summary Improved in vitro tissue culture systems are needed to facilitate the application of transgene technology to the improvement of sugar beet germplasms. Several commercially important sugar beet breeding lines (SDM, 3, 5, 8, 9, 10, 11, HB 526, and CMS 22003) and commercial varieties (Roberta and Gala) were tested for their regeneration capacity through adventitious shoot organogenesis from cotyledons, hypocotyls, root/hypocotyl/shoot transition zone tissues, and leaf lamina and petiole via an intervening callus phase. Callus induction and adventitious shoot regeneration was dependent on genotype and combinations of plant growth regulators. With cotyledon or hypocotyl explants, SDM 3 and 10 showed a better response on adventitious shoot regeneration in medium containing benzyladenine (BA) and 2,3,5-triiodobenzoic acid or 1-naphthaleneacetic acid (NAA) than SDM 11, 5, and 9. Shoot regeneration was obtained from hypocytyl-root or hypocotyl-shoot transition zone tissue in SDM 9, 10, and HB 526 grown on PGo medium supplemented with BA to induce callus, and the regeneration frequency was 25%. Adventitious shoots were also regenerated from leaf explants of SDM 3 and 9 cultured on medium containing NAA for callus induction and BA and NAA to induce shoot regeneration, and in SDM 10 and CSM 22003 cultured on medium containing BA for callus induction and to induce shoot regeneration.  相似文献   

9.
Analysis of mannose selection used for transformation of sugar beet   总被引:39,自引:0,他引:39  
Various factors affecting mannose selection for the production of transgenic plants were studied using Agrobacterium tumefaciens-mediated transformation of sugar beet (Beta vulgaris L.) cotyledonary explants. The selection system is based on the Escherichia coli phosphomannose isomerase (PMI) gene as selectable gene and mannose as selective agent. Transformation frequencies were about 10-fold higher than for kanamycin selection but were only obtained at low selection pressures (1.0–1.5 g/l mannose) where 20–30% of the explants produced shoots. The non-transgenic shoots were eliminated during the selection procedure by a stepwise increase in the mannose concentration up to 10 g/l. Analysis of the transformed shoots showed that the PMI activity varied from 2.4 mU/mg to 350 mU/mg but the expression level was independent of the selection pressure. Complete resistance to mannose of transformed shoots was observed already at low PMI activities (7.5 mU/mg). Genomic DNA blot analysis confirmed the presence of the PMI gene in all transformants analysed. The possible mode of action of mannose selection compared to other selection methods is discussed.  相似文献   

10.
Kamo KK 《Plant cell reports》2003,21(8):797-803
UidA silencing did not occur following three seasons of dormancy for 23 independently transformed lines of Gladiolus plants carrying the bar- uidA fusion gene under control of either the cauliflower mosaic virus 35S (CaMV 35S), ubiquitin ( UBQ3), mannopine synthase ( mas2), or rolD promoters. The highest levels of GUS (beta-glucuronidase) expression were observed in callus, shoots, and roots of plants carrying the bar- uidA fusion gene under control of the CaMV 35S promoter and in shoots and roots of greenhouse-grown plants that contained the rolD promoter. There was no major difference in GUS expression when plants carrying the fusion gene driven by either the CaMV 35S, mas2, or UBQ3 promoters were grown in vitro as compared to growth in the greenhouse, although plants containing the rolD promoter expressed at 4- to 11-fold higher levels in shoots and roots, respectively, when grown in the greenhouse. The levels of GUS expression in greenhouse-grown plants were higher in roots than shoots for all four promoters. Of the 21 plants analyzed, 20 contained one to three copies of the bar- uidA fusion gene. Of the 23 plants analyzed, 11 had rearrangements of the transgene, but without apparent effects on levels of GUS expression.  相似文献   

11.
12.
We have optimized methods for transformation of cotton meristem tissue using the Bio-Rad PDS/1000/He gene gun, selection of transformed tissue, and regeneration of transformed cotton plants. We have used either single or multiple bombardments of cotton tissue with 1.6-Å particles at rupture pressures of 90 or 110 kg/cm2. The distance between the tissue and the source of particles can be varied between 3 and 6 cm. After bombardment, transformed cotton tissue is identified by selection for growth on media supplemented with 50 μg/mL kanamycin. Tissue sections that form leaves, shoots and at least two roots are then transferred to media supplemented with 100 mg indoleacetic acid (IAA) to favor formation of extensive root systems. The plantlets are then transferred to soil, hardened off, and grown in the greenhouse. These plants have been confirmed to be transgenic by western-blot analysis of leaf protein extracts with polyclonal antiserum to the neomycin phosphotransferase II gene product.  相似文献   

13.
In vitro regeneration techniques have been optimized for seven strains and cultivars of sugar beet (Beta vulgaris L.) bred in Russia. The frequency of shoot regeneration from somatic cells and tissues of sugar beet varies from 10 to 97% depending on the explant type, culture-medium composition, and genotype. The in vitro regeneration potential has been estimated in plants with different genotypes. The effect of medium composition (phytohormones and carbohydrates) on the frequency of the formation of a morphogenic callus competent for plant regeneration has been determined. The effect of the types and concentrations of various cytokines (zeatin, kinetin, and 6-benzylaminopurine) on direct shoot regeneration from cotyledon nodes has been estimated. The culture-medium composition has been optimized for direct shoot regeneration from petioles. The effects of different concentrations of abscisic acid on the frequency of shoot regeneration from a morphogenic callus has been studied. Micropropagation has been used to obtain petiole explants and reproduce the shoots obtained by direct regeneration from cotyledon nodes, petioles, and calluses. Improved shoot-regeneration methods can be used for both agrobacterial and bioballistic genetic transformation of the sugar beet genotypes studied.  相似文献   

14.
In vitro regeneration techniques have been optimized for seven strains and cultivars of sugar beet (Beta vulgaris L.) bred in Russia. The frequency of shoot regeneration from somatic cells and tissues of sugar beet varies from 10 to 97% depending on the explant type, culture-medium composition, and genotype. The in vitro regeneration potential has been estimated in plants with different genotypes. The effect of medium composition (phytohormones and carbohydrates) on the frequency of the formation of a morphogenic callus competent for plant regeneration has been determined. The effect of the types and concentrations of various cytokines (zeatin, kinetin, and 6-benzylaminopurine) on direct shoot regeneration from cotyledon nodes has been estimated. The culture-medium composition has been optimized for direct shoot regeneration from petioles. The effects of different concentrations of abscisic acid on the frequency of shoot regeneration from a morphogenic callus has been studied. Micropropagation has been used to obtain petiole explants and reproduce the shoots obtained by direct regeneration from cotyledonnodes, petioles, and calluses. Improved shoot-regeneration methods can be used for both agrobacterial and bioballistic genetic transformation of the sugar beet genotypes studied.  相似文献   

15.
转基因培育抗除草剂水稻   总被引:14,自引:1,他引:13  
吴爱忠  唐克轩  潘俊松 《遗传学报》2000,27(11):992-998
以pAHC20(含Bar基因)和pWRG1515(含GUS基因和潮霉素抗性基因)以及含Bar基因和雪莲凝集素(GNA)基因的pCAMBIA3300 RG为供体DNA,选用水稻品系87203、上农香糯及鄂宜105的成熟胚诱导出的愈伤组织及微不定芽为受体材料,分别采用基因枪和根癌农杆菌(LBA4404,含pAL4404)导入法进行基因转化;经抗性筛选、GUS检测和PCR分析。结果表明,外源基因已通过基  相似文献   

16.
Transfer and expression of the β-glucuronidase gene (uidA) in cultured cotyledons of stone pine (Pinus pinea L.) was obtained by microprojectile bombardment. Conditions for optimum transient expression were established by using plasmid pBI121 delivered by 1.0 μm-diameter gold particles, into 1-day-old cultured cotyledons. Helium pressure of 6.2 MPa, microcarrier travel distance of 6 cm, and 0.8 μg of plasmid DNA per bombardment, were the best parameters for high levels of transient uidA expression. By using these parameters, 98% of bombarded cotyledons showed β-glucuronidase activity, with a mean of 63 Gus foci per cotyledon. This system was used to study the expression of uidA gene driven by several heterologous promoters. The expression under the control of the sunflower polyubiquitin gene (UbB1) promoter (Δ1 deletion) was higher (99% of GUS positive cotyledons) than under the control of the CaMV35S promoter, whereas the rice actin and the maize alcohol dehydrogenase gene promoters gave lower uidA expression, as determined histochemically. These results were confirmed by using the GUS fluorometric assay. Use of a deletion of the sunflower polyubiquitin promoter resulted in GUS activity detectable 35 days after bombardment, and significant levels of GUS activity were confirmed at the end of that period. The results will be useful to design protocols for stable transformation and high levels of transgene expression in P. pinea. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
An Agrobacterium -mediated transformation procedure for aspen ( Populus tremula L.), involving the direct regeneration of shoot-buds from stem explants, is described. Disarmed Agrobacterium tumefaciens strain EHA101 harboring the binary plasmid pKIW1105 (which carries the uidA and nptII genes, coding for β-glucuronidase [GUS] and neomycin phosphotransferase II, respectively) was used for the transformation of stem explants. An incubation period of 48 to 72 h was found to be most effective in terms of transient GUS expression on the cut surface of the stem explants. Adventitious shoots regenerated after 2–3 weeks of culture in a woody plant medium (WPM) supplemented with TDZ (1-phenyl-3-[1,2,3-thiadiazol-5-yl]-urea, Thidiazuron) and carbenicillin. Three different kanamycin-based selection schemes were evaluated for optimization of transformation efficiency: (1) Kanamycin was added only to the rooting medium (5 to 6 weeks post-inoculation), or (2) to the regeneration medium 10–14 days after inoculation, or (3) after 2 days of co-cultivation. The third selection scheme was found to be optimal for adventitious shoots with regard to both the time required and the transformation efficiency, the latter being much higher than with the other schemes. Leaf samples from kanamycin-resistant shoots and plantlets were tested for GUS expression, and subjected to polymerase chain reaction (PCR) analysis of uidA and nptII genes. A Southern blot of the corresponding PCR-amplified fragments confirmed their authenticity and Southern blots of total plant DNA confirmed integration of the nptII gene into the plant genome.  相似文献   

18.
Wan Y  Lemaux PG 《Plant physiology》1994,104(1):37-48
A rapid, efficient, and reproducible system to generate large numbers of independently transformed, self-fertile, transgenic barley (Hordeum vulgare L.) plants is described. Immature zygotic embryos, young callus, and microspore-derived embryos were bombarded with a plasmid containing bar and uidA either alone or in combination with another plasmid containing a barley yellow dwarf virus coat protein (BYDVcp) gene. A total of 91 independent bialaphos-resistant callus lines expressed functional phosphinothricin acetyltransferase, the product of bar. Integration of bar was confirmed by DNA hybridization in the 67 lines analyzed. Co-transformation frequencies of 84 and 85% were determined for the two linked genes (bar and uidA) and for two unlinked genes (bar and the BYDVcp gene), respectively. More than 500 green, fertile, transgenic plants were regenerated from 36 transformed callus lines on bialaphos-containing medium; albino plants only were regenerated from 41 lines. T0 plants in 25 lines (three plants per line) were analyzed by DNA hybridization, and all contained bar. Most contained the same integration patterns for the introduced genes (bar, uidA, and the BYDVcp gene) as their parental callus lines. Transmission of the genes to T1 progeny was confirmed in the five families analyzed by DNA hybridization. A germination test of immature T1 embryos on bialaphos-containing medium was useful for selecting individuals that were actively expressing bar, although this was not a good indicator of the presence or absence of bar. Expression of bar in some progeny plants was indicated by resistance to the herbicide Basta. The T1 plants were in soil approximately 7 months after bombardment of the immature embryo.  相似文献   

19.
Summary Improved in vitro tissue culture systems are needed to facilitate the application of recombinant DNA technology to the improvement of sugar beet germplasm. The effects of N 6-benzyladenine (BA) and thidiazuron (TDZ) pretreatment on adventitious shoot and somatic embryogenesis regeneration were evaluated in a range of sugar beet breeding lines and commercial varieties. Petiole explants showed higher frequencies of direct adventitious shoot formation and produced more shoots per explant than leaf lamina explants. TDZ was more effective than BA for the promotion of shoot formation. The optimal TDZ concentrations were 2.3–4.6 μM for the induction of adventitious shoot regeneration. Direct somatic embryogenesis from intact seedlings could be induced by either BA or TDZ. TDZ-induced somatic embryogenesis occurred on the lower surface of cotyledons at concentrations of 0.5–2μM and was less genotype-dependent than with Ba. A high frequency of callus induction could be obtained from seedlings and leaf explants, but only a few of the calluses derived from leaf explants could regenerate to plants via indirect somatic embryogenesis. These results demonstrated that TDZ could prove to be a more effective cytokinin for in vitro culture of sugar beet than BA. Rapid and efficient regeneration of plants using TDZ may provide a route for the production of transgenic sugar beet following Agrobacterium-mediated transformation.  相似文献   

20.
Plant regeneration from immature embryos of 15 Indian barley genotypes (Hordeum vulgare L.) was examined. Highest percent callus induction and number of regenerated plantlets were obtained in cultivars BL 2 (94.4 %; 12.1), RD 2668 (92.6 %; 9.1) and RD 2552 (90.8 %; 7.8). The highly responding cultivar BL 2 was selected for further development of transformation protocol. The plasmid DNA isolated from pCAMBIA1381 harbouring hptII gene as selectable marker and gusA gene as reporter was used. Particle bombardment was used for transformation of immature embryos and regeneration of transgenic plants in Indian barley genotype for the first time. Transformation experiments were carried out using different parameters and optimum conditions for DNA delivery was standardized. The transient expression of gusA gene was investigated as a preliminary test of optimum DNA delivery and for selecting the most appropriate bombardment parameters. The optimum conditions were: gold microparticles (diameter 1.0 μm) shot with 1,100 psi rupture disc pressure. The 3 cm distance between rupture disk and macrocarrier and 9 cm target tissue distance yielded high transient GUS expression. The immature embryos were bombarded twice to increase area for efficient gene delivery. Osmotic medium optimization with 0.4 M sorbitol and preculture of immature embryos for 5 days prior to bombardment resulted into efficient gene transfer in barley. Selection of transformed tissue was performed after 7 days resting step on selection medium containing 50 mg?l?1 hygromycin. After two more selection steps, green shoots were rooted on MSB5 medium with 50 mg?l?1 hygromycin. PCR analysis using primers specific for hptII and gusA genes and Southern blot analysis with hptII probes confirmed the stable integration of transgene in barley genome. Molecular analysis of T1 generation plantlets revealed the amplification of selectable marker hptII gene in the progeny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号