首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Yamamoto H  Matano T 《Uirusu》2007,57(2):133-139
A logical approach for prophylactic HIV-1 vaccine development begins by recognition that the regimen needs to contain viruses which are not cleared by primary host immune responses and develop persistent infection. Hence the required strategy is different from the one against self-remitting acute infections which aims at eliciting robust host immune responses in advance by infection mimicry. Host adaptive immune responses do play a central role in primary resolution from acute HIV-1 and simian immunodeficiency virus (SIV) infection, but as observed in the non-remitting disease course, their function is not fully exerted, leading to failure in viral containment. Either overcoming the limitations of antiviral immunity in natural infection or augmenting the effectors potentially capable of controlling virus replication would be essential for development of an effective HIV-1 vaccine. This approach is hand-in-hand with understanding of the reversibility of various steps leading to establishment of persistent HIV-1 infection. This article reviews the interplay between HIV-1/SIV and the infected host, mainly focusing on macaque models of SIV infection and characterization of the two major wings of adaptive immunity, cytotoxic T lymphocytes (CTLs) and neutralizing antibodies. Discussed in parallel are the up-to-date topics of HIV-1 vaccine development including our recent progress.  相似文献   

2.
DC-SIGN, a type II membrane protein with a C-type lectin binding domain that is highly expressed on mucosal dendritic cells (DCs) and certain macrophages in vivo, binds to ICAM-3, ICAM-2, and human and simian immunodeficiency viruses (HIV and SIV). Virus captured by DC-SIGN can be presented to T cells, resulting in efficient virus infection, perhaps representing a mechanism by which virus can be ferried via normal DC trafficking from mucosal tissues to lymphoid organs in vivo. To develop reagents needed to characterize the expression and in vivo functions of DC-SIGN, we cloned, expressed, and analyzed rhesus macaque, pigtailed macaque, and murine DC-SIGN and made a panel of monoclonal antibodies (MAbs) to human DC-SIGN. Rhesus and pigtailed macaque DC-SIGN proteins were highly similar to human DC-SIGN and bound and transmitted HIV type 1 (HIV-1), HIV-2, and SIV to receptor-positive cells. In contrast, while competent to bind virus, murine DC-SIGN did not transmit virus to receptor-positive cells under the conditions tested. Thus, mere binding of virus to a C-type lectin does not necessarily mean that transmission will occur. The murine and macaque DC-SIGN molecules all bound ICAM-3. We mapped the determinants recognized by a panel of 16 MAbs to the repeat region, the lectin binding domain, and the extreme C terminus of DC-SIGN. One MAb was specific for DC-SIGN, failing to cross-react with DC-SIGNR. Most MAbs cross-reacted with rhesus and pigtailed macaque DC-SIGN, although none recognized murine DC-SIGN. Fifteen of the MAbs recognized DC-SIGN on DCs, with MAbs to the repeat region generally reacting most strongly. We conclude that rhesus and pigtailed macaque DC-SIGN proteins are structurally and functionally similar to human DC-SIGN and that the reagents that we have developed will make it possible to study the expression and function of this molecule in vivo.  相似文献   

3.
We have analyzed a number of biological features of HTLV-IV, a retrovirus indistinguishable from a macaque isolate of simian immunodeficiency virus (SIV), and compared this virus with several strains of human immunodeficiency virus type 1 (HIV-1). Although HTLV-IV was found to be similar to HIV-1 in its tropism for CD4+ lymphocytes, its effects on CD4 expression and the ability of its externalized envelope molecule to form a complex directly with the CD4 molecule, a number of striking differences were noted. Unlike with HIV-1, the range of cells susceptible to HTLV-IV infection and syncytia formation was restricted to a subset of CD4+ cell lines, particularly those that coexpressed CD4 with human leukocyte antigen (HLA) class II antigens. An analysis of the patterns of HTLV-IV infection with B x T somatic cell hybrids indicated that for this virus, molecules in addition to CD4 were probably required to facilitate infection and cell fusion. Additional studies of HTLV-IV infection of Sup-T1 cells, which are exquisitely sensitive to cytopathic effects induced by HIV-1, demonstrated that HTLV-IV infection could occur in the absence of cytopathic effects and, remarkably, with minimal or no downmodulation of the CD4 molecule from the cell surface. The failure of HTLV-IV infection to reduce the expression of several CD4 epitopes suggested that the HTLV-IV envelope produced by Sup-T1 cells was altered in its ability to interact with or bind to CD4. Additional differences were also noted in the size of the transmembrane envelope molecule of HTLV-IV produced by Sup-T1 cells, indicating that cell-specific alterations in processing of the HTLV-IV envelope occurred during the production of virus in this cell line. Understanding the basis for these biological differences between HTLV-IV and the HIV-1 viruses may help to elucidate more general mechanisms for pathogenesis of other members of the SIV and HIV families of retroviruses.  相似文献   

4.
Tetherin, also known as BST2, CD317 or HM1.24, was recently identified as an interferon-inducible host–cell factor that interferes with the detachment of virus particles from infected cells. HIV-1 overcomes this restriction by expressing an accessory protein, Vpu, which counteracts tetherin. Since lentiviruses of the SIVsmm/mac/HIV-2 lineage do not have a vpu gene, this activity has likely been assumed by other viral gene products. We found that deletion of the SIVmac239 nef gene significantly impaired virus release in cells expressing rhesus macaque tetherin. Virus release could be restored by expressing Nef in trans. However, Nef was unable to facilitate virus release in the presence of human tetherin. Conversely, Vpu enhanced virus release in the presence of human tetherin, but not in the presence of rhesus tetherin. In accordance with the species-specificity of Nef in mediating virus release, SIV Nef downregulated cell-surface expression of rhesus tetherin, but did not downregulate human tetherin. The specificity of SIV Nef for rhesus tetherin mapped to four amino acids in the cytoplasmic domain of the molecule that are missing from human tetherin, whereas the specificity of Vpu for human tetherin mapped to amino acid differences in the transmembrane domain. Nef alleles of SIVsmm, HIV-2 and HIV-1 were also able to rescue virus release in the presence of both rhesus macaque and sooty mangabey tetherin, but were generally ineffective against human tetherin. Thus, the ability of Nef to antagonize tetherin from these Old World primates appears to be conserved among the primate lentiviruses. These results identify Nef as the viral gene product of SIV that opposes restriction by tetherin in rhesus macaques and sooty mangabeys, and reveal species-specificity in the activities of both Nef and Vpu in overcoming tetherin in their respective hosts.  相似文献   

5.
Although combination therapy allows the suppression of human immunodeficiency virus type 1 (HIV-1) viremia to undetectable levels, eradication has not been achieved because the virus persists in cellular reservoirs, particularly the latent reservoir in resting CD4(+) T lymphocytes. We previously established a simian immunodeficiency virus (SIV)/macaque model to study latency. We describe here a novel mechanism for the induction of SIV from latently infected resting CD4(+) T cells. Several human cell lines including CEMx174 and Epstein-Barr virus-transformed human B-lymphoblastoid cell lines mediated contact-dependent activation of resting macaque T cells and induction of latent SIV. Antibody-blocking assays showed that interactions between the costimulatory molecule CD2 and its ligand CD58 were involved, whereas soluble factors and interactions between T-cell receptors and major histocompatibility complex class II were not. Combinations of specific antibodies to CD2 also induced T-cell activation and virus induction in human resting CD4(+) T cells carrying latent HIV-1. This is the first demonstration that costimulatory signals can induce latent virus without the coengagement of the T-cell receptor, and this study might provide insights into potential pathways to target latent HIV-1.  相似文献   

6.
To date, only a small number of anti-human immunodeficiency virus type 1 (HIV-1) monoclonal antibodies (MAbs) with relatively broad neutralizing activity have been isolated from infected individuals. Adequate techniques for defining how frequently antibodies of these specificities arise in HIV-infected people have been lacking, although it is generally assumed that such antibodies are rare. In order to create an epitope-specific neutralization assay, we introduced well-characterized HIV-1 epitopes into the heterologous context of simian immunodeficiency virus (SIV). Specifically, epitope recognition sequences for the 2F5, 4E10, and 447-52D anti-HIV-1 neutralizing monoclonal antibodies were introduced into the corresponding regions of SIVmac239 by site-directed mutagenesis. Variants with 2F5 or 4E10 recognition sequences in gp41 retained replication competence and were used for neutralization assays. The parental SIVmac239 and the neutralization-sensitive SIVmac316 were not neutralized by the 2F5 and 4E10 MAbs, nor were they neutralized significantly by any of the 96 HIV-1-positive human plasma samples that were tested. The SIV239-2F5 and SIV239-4E10 variants were specifically neutralized by the 2F5 and 4E10 MAbs, respectively, at concentrations within the range of what has been reported previously for HIV-1 primary isolates (J. M. Binley et al., J. Virol. 78:13232-13252, 2004). The SIV239-2F5 and SIV239-4E10 epitope-engrafted variants were used as biological screens for the presence of neutralizing activity of these specificities. None of the 92 HIV-1-positive human plasma samples that were tested exhibited significant neutralization of SIV239-2F5. One plasma sample exhibited >90% neutralization of SIV239-4E10, but this activity was not competed by a 4E10 target peptide and was not present in concentrated immunoglobulin G (IgG) or IgA fractions. We thus confirm by direct analysis that neutralizing activities of the 2F5 and 4E10 specificities are either rare among HIV-1-positive individuals or, if present, represent only a very small fraction of the total neutralizing activity in any given plasma sample. We further conclude that the structures of gp41 from SIVmac239 and HIV-1 are sufficiently similar such that epitopes engrafted into SIVmac239 can be readily recognized by the cognate anti-HIV-1 monoclonal antibodies.  相似文献   

7.
Antigenic epitopes on the major core (gag) protein of isolates of simian and human immunodeficiency virus (SIV and HIV) were compared using a panel of eleven mouse monoclonal antibodies (Mabs) that recognized nine distinct gag epitopes. Viral isolates used for comparison were HIV-1IIIb, HIV-2ROD, and SIV isolates from macaque (SIVmac), sooty mangabey (SIVsm-UCD), African green monkey (SIVagm), and stump-tailed macaque (SIVstm-UCD). The relatedness of the various HIV and SIV isolates, as determined by Mabs to core protein epitopes, paralleled that ascertained by genetic sequencing.  相似文献   

8.
Five monoclonal antibodies (MoAbs) to gag proteins of HIV-1 were prepared in mice. Western blot analyses showed that three clones recognized p24 and the other two p17. Among the three MoAbs recognizing p24, all recognized two of three strains of HIV-2. The spectra of reactions to SIV[AGM] of these MoAbs against p24 were different from one to another; K3-24 recognized all four strains of SIV[AGM], L6-24 three of them, and K5-24 none of them. Of the two MoAbs recognizing p17, K7-17 recognized two of the three strains of HIV-2 but not any SIV[AGM] strain, and the other clone, L14-17 recognized none of analogous proteins of HIV-2 nor of SIV[AGM]. These results demonstrate that the gag proteins of HIV-2 and SIV[AGM] share some common epitopes with those of HIV-1 which are heterogenic in some degree among the different isolates.  相似文献   

9.
Nef is the viral gene product employed by the majority of primate lentiviruses to overcome restriction by tetherin (BST-2 or CD317), an interferon-inducible transmembrane protein that inhibits the detachment of enveloped viruses from infected cells. Although the mechanisms of tetherin antagonism by HIV-1 Vpu and HIV-2 Env have been investigated in detail, comparatively little is known about tetherin antagonism by SIV Nef. Here we demonstrate a direct physical interaction between SIV Nef and rhesus macaque tetherin, define the residues in Nef required for tetherin antagonism, and show that the anti-tetherin activity of Nef is dependent on clathrin-mediated endocytosis. SIV Nef co-immunoprecipitated with rhesus macaque tetherin and the Nef core domain bound directly to a peptide corresponding to the cytoplasmic domain of rhesus tetherin by surface plasmon resonance. An analysis of alanine-scanning substitutions identified residues throughout the N-terminal, globular core and flexible loop regions of Nef that were required for tetherin antagonism. Although there was significant overlap with sequences required for CD4 downregulation, tetherin antagonism was genetically separable from this activity, as well as from other Nef functions, including MHC class I-downregulation and infectivity enhancement. Consistent with a role for clathrin and dynamin 2 in the endocytosis of tetherin, dominant-negative mutants of AP180 and dynamin 2 impaired the ability of Nef to downmodulate tetherin and to counteract restriction. Taken together, these results reveal that the mechanism of tetherin antagonism by Nef depends on a physical interaction between Nef and tetherin, requires sequences throughout Nef, but is genetically separable from other Nef functions, and leads to the removal of tetherin from sites of virus release at the plasma membrane by clathrin-mediated endocytosis.  相似文献   

10.
As part of the ongoing study of natural HIV-1 resistance in the women of the Nairobi Sex Workers' study, we have examined a resistance-associated HLA class I allele at the molecular level. Typing by polymerase chain reaction using sequence-specific primers determined that this molecule is closely related to HLA-A*0214, one of a family of HLA-A2 supertype alleles which correlate with HIV-1 resistance in this population. Direct nucleotide sequencing shows that this molecule differs from A*0214, having a silent nucleotide substitution. We therefore propose to designate it HLA-A*02142. We have determined the peptide-binding motif of HLA-A*0214/02142 by peptide elution and bulk Edman degradative sequencing. The resulting motif, X-[Q,V]-X-X-X-K-X-X-[V,L], includes lysine as an anchor at position 6. The data complement available information on the peptide-binding characteristics of this molecule, and will be of use in identifying antigenic peptides from HIV-1 and other pathogens.  相似文献   

11.
Great strides have been made in understanding the evolutionary history of simian immunodeficiency virus (SIV) and the zoonoses that gave rise to HIV-1 and HIV-2. What remains unknown is how long these SIVs had been circulating in non-human primates before the transmissions to humans. Here, we use relaxed molecular clock dating techniques to estimate the time of most recent common ancestor for the SIVs infecting chimpanzees and sooty mangabeys, the reservoirs of HIV-1 and HIV-2, respectively. The date of the most recent common ancestor of SIV in chimpanzees is estimated to be 1492 (1266–1685), and the date in sooty mangabeys is estimated to be 1809 (1729–1875). Notably, we demonstrate that SIV sequences sampled from sooty mangabeys possess sufficient clock-like signal to calibrate a molecular clock; despite the differences in host biology and viral dynamics, the rate of evolution of SIV in sooty mangabeys is indistinguishable from that of its human counterpart, HIV-2. We also estimate the ages of the HIV-2 human-to-human transmissible lineages and provide the first age estimate for HIV-1 group N at 1963 (1948–1977). Comparisons between the SIV most recent common ancestor dates and those of the HIV lineages suggest a difference on the order of only hundreds of years. Our results suggest either that SIV is a surprisingly young lentiviral lineage or that SIV and, perhaps, HIV dating estimates are seriously compromised by unaccounted-for biases.  相似文献   

12.
Most simian immunodeficiency virus (SIV), human immunodeficiency virus type 2 (HIV-2), and HIV-1 infection of host peripheral blood mononuclear cells (PBMCs) is CD4 dependent. In some cases, X4 HIV-1 chemotaxis is CD4 independent, and cross-species transmission might be facilitated by CD4-independent entry, which has been demonstrated for some SIV strains in CD4(-) non-T cells. As expected for CCR5-dependent virus, SIV required CD4 on rhesus and pigtail macaque PBMCs for infection and chemotaxis. However, SIV induced the chemotaxis of human PBMCs in a CD4-independent manner. Furthermore, in contrast to the results of studies using transfected human cell lines, SIV did not require CD4 binding to productively infect primary human PBMCs. CD4-independent lymphocyte and macrophage infection may facilitate cross-species transmission, while reacquisition of CD4 dependence may confer a selective advantage for the virus within new host species.  相似文献   

13.
The relevance of simian/human immunodeficiency virus (SHIV) infection of macaques to HIV-1 infection in humans depends on how closely SHIVs mimic HIV-1 transmission, pathogenesis, and diversity. Circulating HIV-1 strains are predominantly subtypes C and A and overwhelmingly require CCR5 for entry, yet most SHIVs incorporate CXCR4-using subtype B envelopes (Envs). While pathogenic subtype C-based SHIVs have been constructed, the subtype A-based SHIVs (SHIV-As) constructed to date have been unable to replicate in macaque cells. To understand the barriers to SHIV-A replication in macaque cells, HIVA(Q23)/SIV(vif) was constructed by engineering a CCR5-tropic subtype A provirus to express SIV vif, which counters the macaque APOBEC3G restriction. HIVA(Q23)/SIV(vif) replicated poorly in pig-tailed macaque (Ptm) lymphocytes, but viruses were adapted to Ptm lymphocytes. Two independent mutations in gp120, G312V (V3 loop) and A204E (C2 region), were identified that increased peak virus levels by >100-fold. Introduction of G312V and A204E to multiple subtype A Envs and substitution of G312 and A204 with other residues increased entry into Ptm cells by 10- to 100-fold. G312V and A204E Env variants continued to require CCR5 for entry but were up to 50- and 200-fold more sensitive to neutralization by IgG1b12 and soluble CD4 and had a 5- to 50-fold increase in their ability to utilize Ptm CD4 compared to their wild-type counterparts. These findings identify the inefficient use of Ptm CD4 as an unappreciated restriction to subtype A HIV-1 replication in Ptm cells and reveal amino acid changes to gp120 that can overcome this barrier.  相似文献   

14.
The adenovirus type 5 (Ad5)-based vaccine developed by Merck failed to either prevent HIV-1 infection or suppress viral load in subsequently infected subjects in the STEP human Phase 2b efficacy trial. Analogous vaccines had previously also failed in the simian immunodeficiency virus (SIV) challenge-rhesus macaque model. In contrast, vaccine protection studies that used challenge with a chimeric simian-human immunodeficiency virus (SHIV89.6P) in macaques did not predict the human trial results. Ad5 vector-based vaccines did not protect macaques from infection after SHIV89.6P challenge but did cause a substantial reduction in viral load and a preservation of CD4+ T cell counts after infection, findings that were not reproduced in the human trials. Although the SIV challenge model is incompletely validated, we propose that its expanded use can help facilitate the prioritization of candidate HIV-1 vaccines, ensuring that resources are focused on the most promising candidates. Vaccine designers must now develop T cell vaccine strategies that reduce viral load after heterologous challenge.  相似文献   

15.
Analysis of molecularly cloned DNAs of SIVs isolated from Asian rhesus macaque (Macaca mulatta; SIVmac) and pig-tailed macaque (Macaca nemestrina; SIVmne) has indicated a high degree of sequence homology between these viruses. Thus SIVmac and SIVmne might have originated from the same or very closely related viruses. We have cloned and sequenced a PCR-amplified segment containing the LTR sequences of SIV originating from a stump-tailed macaque (Macaca arctoides; SIVstm). Comparative sequence analysis indicates that SIVstm belongs to the SIV/HIV-2 group; however, it is genetically distinct from the other members.  相似文献   

16.
Major histocompatibility complex (MHC) molecules expressed on the surface of human immunodeficiency virus (HIV) are potential targets for neutralizing antibodies. Since MHC molecules are polymorphic, nonself MHC can also be immunogenic. We have used combinations of novel recombinant HLA class I and II and HIV/simian immunodeficiency virus (SIV) antigens, all linked to dextran, to investigate whether they can elicit protective immunity against heterologous simian/human immunodeficiency virus (SHIV) challenge in rhesus macaques. Three groups of animals were immunized with HLA (group 1, n = 8), trimeric YU2 HIV type 1 (HIV-1) gp140 and SIV p27 (HIV/SIV antigens; group 2, n = 8), or HLA plus HIV/SIV antigens (group 3, n = 8), all with Hsp70 and TiterMax Gold adjuvant. Another group (group 4, n = 6) received the same vaccine as group 3 without TiterMax Gold. Two of eight macaques in group 3 were completely protected against intravenous challenge with 18 50% animal infective doses (AID50) of SHIV-SF162P4/C grown in human cells expressing HLA class I and II lineages represented in the vaccine, while the remaining six macaques showed decreased viral loads compared to those in unimmunized animals. Complement-dependent neutralizing activity in serum and high levels of anti-HLA antibodies were elicited in groups 1 and 3, and both were inversely correlated with the plasma viral load at 2 weeks postchallenge. Antibody-mediated protection was strongly supported by the fact that transfer of pooled serum from the two challenged but uninfected animals protected two naïve animals against repeated low-dose challenge with the same SHIV stock. This study demonstrates that immunization with recombinant HLA in combination with HIV-1 antigens might be developed into an alternative strategy for a future AIDS vaccine.  相似文献   

17.
18.
Major histocompatibility complex class II molecules encoded by two common rhesus macaque alleles Mamu-DRB1*0406 and Mamu-DRB*w201 have been purified, and quantitative binding assays have been established. The structural requirements for peptide binding to each molecule were characterized by testing panels of single-substitution analogs of the two previously defined epitopes HIV Env242 (Mamu-DRB1*0406 restricted) and HIV Env482 (Mamu-DRB*w201 restricted). Anchor positions of both macaque DR molecules were spaced following a position 1 (P1), P4, P6, P7, and P9 pattern. The specific binding motif associated with each molecule was distinct, but largely overlapping, and was based on crucial roles of aromatic and/or hydrophobic residues at P1, P6, and P9. Based on these results, a tentative Mamu class II DR supermotif was defined. This pattern is remarkably similar to a previously defined human HLA-DR supermotif. Similarities in binding motifs between human HLA and macaque Mamu-DR molecules were further illustrated by testing a panel of more than 60 different single-substitution analogs of the HLA-DR-restricted HA 307-319 epitope for binding to Mamu-DRB*w201 and HLA-DRB1*0101. The Mamu-DRB1*0406 and -DRB*w201 binding capacity of a set of 311 overlapping peptides spanning the entire simian immunodeficiency virus (SIV) genome was also evaluated. Ten peptides capable of binding both molecules were identified, together with 19 DRB1*0406 and 43 DRB*w201 selective binders. The Mamu-DR supermotif was found to be present in about 75% of the good binders and in 50% of peptides binding with intermediate affinity but only in approximately 25% of the peptides which did not bind either Mamu class II molecule. Finally, using flow cytometric detection of antigen-induced intracellular gamma interferon, we identify a new CD4(+) T-lymphocyte epitope encoded within the Rev protein of SIV.  相似文献   

19.
20.
The envelope proteins (Env) of human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) form homo-oligomers in the endoplasmic reticulum. The oligomeric structure of Env is maintained, but is less stable, after cleavage in a Golgi compartment and transport to the surface of infected cells. Functional, virion-associated HIV-1 and SIV Env have an almost exclusively trimeric structure. In addition, a soluble form of SIV Env (gp140) forms a nearly homogeneous population of trimers. Here, we describe the oligomeric structure of soluble, uncleaved HIV-1 gp140 and modifications that promote a stable trimeric structure. Biochemical and biophysical analyses, including sedimentation equilibrium and scanning transmission electron microscopy, revealed that unmodified HIV-1 gp140 purified as a heterogeneous range of oligomeric species, including dimers and aggregates. Deletion of the V2 domain alone or, especially, both the V1 and V2 domains reduced dimer formation but promoted aggregation rather than trimerization. Expressing gp140 with mannose-only oligosaccharides did not eliminate heterogeneity. Replacement of the entire gp41 segment of HIV-1 gp140 or just the N-terminal half (85 amino acids) of this segment with the corresponding region of SIV was sufficient to confer efficient trimerization for gp140 derived from clade B and C isolates. Importantly, the relatively small segment of the HIV Env replaced by SIV sequences contains no known targets of neutralizing antibody. The soluble trimeric form of HIV-1 Env should prove useful for assessment of antigenic structure and immunogenicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号