首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Important phenological activities in seasonally dry tropical forest species occur within the hot‐dry period when soil water is limiting, while the subsequent wet period is utilized for carbon accumulation. Leaf emergence and leaf area expansion in most of these tree species precedes the rainy season when the weather is very dry and hot and the soil cannot support nutrient uptake by the plants. The nutrient requirement for leaf expansion during the dry summer period, however, is substantial in these species. We tested the hypothesis that the nutrients withdrawn from the senescing leaves support the emergence and expansion of leaves in dry tropical woody species to a significant extent. We examined the leaf traits (with parameters such as leaf life span, leaf nutrient content and retranslocation of nutrients during senescence) in eight selected tree species in northern India. The concentrations of N, P and K declined in the senescing foliage while those of Na and Ca increased. Time series observations on foliar nutrients indicated a substantial amount of nutrient resorption before senescence and a ‘tight nutrient budgeting’. The resorbed N‐mass could potentially support 50 to 100% and 46 to 80% of the leaf growth in terms of area and weight, respectively, across the eight species studied. Corresponding values for P were 29 to 100% and 20 to 91%, for K 29 to 100% and 20 to 57%, for Na 3 to 100% and 1 to 54%, and for Ca 0 to 32% and 0 to 30%. The species differed significantly with respect to their efficiency in nutrient resorption. Such interspecific differences in leaf nutrient economy enhance the conservative utilization of soil nutrients by the dry forest community. This reflects an adaptational strategy of the species growing on seasonally dry, nutrient‐poor soils as they tend to depend more or less on efficient internal cycling and, thus, utilize the retranslocated nutrients for the production of new foliage biomass in summer when the availability of soil moisture and nutrients is severely limited.  相似文献   

2.
The fine root systems of three tropical montane forests differing in age and history were investigated in the Cordillera Talamanca, Costa Rica. We analyzed abundance, vertical distribution, and morphology of fine roots in an early successional forest (10–15 years old, ESF), a mid‐successional forest (40 years old, MSP), and a nearby undisturbed old‐growth forest (OGF), and related the root data to soil morphological and chemical parameters. The OGF stand contained a 19 cm deep organic layer on the forest floor (i.e., 530 mol C/m2), which was two and five times thicker than that of the MSF (10 cm) and ESF stands (4 cm), respectively. There was a corresponding decrease in fine root biomass in this horizon from 1128 g dry matter/m2 in the old‐growth forest to 337 (MSF) and 31 g/m2 (ESF) in the secondary forests, although the stands had similar leaf areas. The organic layer was a preferred substrate for fine root growth in the old‐growth forest as indicated by more than four times higher fine root densities (root mass per soil volume) than in the mineral topsoil (0–10 cm); in the two secondary forests, root densities in the organic layer were equal to or lower than in the mineral soil. Specific fine root surface areas and specific root tip abundance (tips per unit root dry mass) were significantly greater in the roots of the ESF than the MSF and OGF stands. Most roots of the ESF trees (8 abundant species) were infected by VA mycorrhizal fungi; ectomycorrhizal species (Quercus copeyemis and Q. costaricensis) were dominant in the MSF and OGF stands. Replacement of tropical montane oak forest by secondary forest in Costa Rica has resulted in (1) a large reduction of tree fine root biomass; (2) a substantial decrease in depth of the organic layer (and thus in preferred rooting space); and (3) a great loss of soil carbon and nutrients. Whether old–growth Quercus forests maintain a very high fine root biomass because their ectomycorrhizal rootlets are less effective in nutrient absorption than those of VA mycorrhizal secondary forests, or if their nutrient demand is much higher than that of secondary forests (despite a similar leaf area and leaf mass production), remains unclear.  相似文献   

3.
Young secondary forests and plantations in the moist tropics often have rapid rates of biomass accumulation and thus sequester large amounts of carbon. Here, we compare results from mature forest and nearby 15–20 year old tree plantations in lowland Costa Rica to evaluate differences in allocation of carbon to aboveground production and root systems. We found that the tree plantations, which had fully developed, closed canopies, allocated more carbon belowground - to their root systems - than did mature forest. This increase in belowground carbon allocation correlated significantly with aboveground tree growth but not with canopy production (i.e., leaf fall or fine litter production). In contrast, there were no correlations between canopy production and either tree growth or belowground carbon allocation. Enhanced allocation of carbon to root systems can enhance plant nutrient uptake, providing nutrients beyond those required for the production of short-lived tissues such as leaves and fine roots, and thus enabling biomass accumulation. Our analyses support this deduction at our site, showing that enhanced allocation of carbon to root systems can be an important mechanism promoting biomass accumulation during forest growth in the moist tropics. Identifying factors that control when, where and for how long this occurs would help us to improve models of forest growth and nutrient cycling, and to ascertain the role that young forests play in mitigating increased atmospheric carbon dioxide.  相似文献   

4.
Mechanisms by which the productivity of tropical ecosystems is limited by nutrients is a long-standing question, but little information is available on the nutrient dynamics supporting the masting phenomenon in Southeast Asian evergreen rainforests. In this study we examined the nutrient sink and potential nutrient sources of masting in a Bornean tropical forest. We investigated if nutrient flux in fine litter, tree stems, and soils changed temporally in response to intense flower and fruit production. Fifty-five litter traps were installed in a 2-ha plot at the onset of flowering (April 2010), and litter and nutrient fluxes were monitored for more than 4 years (May 2010–December 2014). Wood cores of trunks and coarse roots of abundant species (Shorea spp.) and soil samples were collected in May 2010, September 2010, and September 2011 (coinciding with peak flowering, peak fruiting, and 1 year after fruiting, respectively). The P and K fluxes in the total litter were significantly greater in the mast year (2010) than non-mast years, whereas the Mg, N, and Ca fluxes did not vary in relation to masting. In line with the nutrient fluxes, P and K concentrations in coarse roots of flowering individuals of S. multiflora decreased in September 2011. The present results suggest that tropical trees require extraordinary amounts of P and K for masting, and may retranslocate stored nutrients to meet the elevated nutrient demands for masting.  相似文献   

5.
Xishuangbanna is a region located at the northern edge of tropical Asia. Biomass estimates of its tropical rain forest have not been published in English literature. We estimated forest biomass and its allocation patterns in five 0.185–1.0 ha plots in tropical seasonal rain forests of Xishuangbanna. Forest biomass ranged from 362.1 to 692.6 Mg/ha. Biomass of trees with diameter at 1.3 m breast height (DBH) ≥ 5 cm accounted for 98.2 percent of the rain forest biomass, followed by shrubs (0.9%), woody lianas (0.8%), and herbs (0.2%). Biomass allocation to different tree components was 68.4–70.0 percent to stems, 19.8–21.8 percent to roots, 7.4–10.6 percent to branches, and 0.7–1.3 percent to leaves. Biomass allocation to the tree sublayers was 55.3–62.2 percent to the A layer (upper layer), 30.6–37.1 percent to the B layer (middle), and 2.7–7.6 percent to the C layer (lower). Biomass of Pometia tomentosa, a dominant species, accounted for 19.7–21.1 percent of the total tree biomass. The average density of large trees (DBH ≥100 cm) was 9.4 stems/ha on two small plots and 3.5 stems/ha on two large plots, illustrating the potential to overestimate biomass on a landscape scale if only small plots are sampled. Biomass estimations are similar to typical tropical rain forests in Southeast Asia and the Neotropics.  相似文献   

6.
* It is commonly hypothesized that stand-level fine root biomass increases as soil fertility decreases both within and among tropical forests, but few data exist to test this prediction across broad geographic scales. This study investigated the relationships among fine roots, arbuscular mycorrhizal (AM) fungi and soil nutrients in four lowland, neotropical rainforests. * Within each forest, samples were collected from plots that differed in fertility and above-ground biomass, and fine roots, AM hyphae and total soil nutrients were measured. * Among sites, total fine root mass varied by a factor of three, from 237+/-19 g m-2 in Costa Rica to 800+/-116 g m-2 in Brazil (0-40 cm depth). Both root mass and length were negatively correlated to soil nitrogen and phosphorus, but AM hyphae were not related to nutrients, root properties or above-ground biomass. * These results suggest that understanding how soil fertility affects fine roots is an additional factor that may improve the representation of root functions in global biogeochemical models or biome-wide averages of root properties in tropical forests.  相似文献   

7.
Du YX  Pan GX  Li LQ  Hu ZL  Wang XZ 《应用生态学报》2010,21(8):1926-1932
为了解喀斯特生态系统退化过程中树木细根生物量和土壤养分的变化,选择贵州中部喀斯特山地乔木林、灌木林和灌草丛3种植被生态系统,比较分析不同深度(0~5 cm、5~10 cm和10~15 cm)土壤细根数量及其养分情况.结果表明:树木细根主要分布在0~10 cm土层,并随土层加深而减少.在0~10 cm土层中,乔木林、灌木林和灌草丛的活细根生物量分别占0~15 cm总细根生物量的42.78%、56.75%和53.38%,总活细根生物量的83.36%、86.91%和93.79%.不同植被下优势种植物细根生物量存在差异.0~5 cm土层乔木林活细根氮素和磷素储量均显著高于灌草丛和灌木林(P0.05),但灌木林和灌草丛间没有差异;5~10 cm土层乔木林活细根氮和磷储量显著高于灌草丛和灌木林(P0.05),灌木林下又显著高于灌草丛下(P0.05).0~10 cm土层的活细根生物量与植株地上部分生物量呈正相关,植物叶片氮、磷养分含量与细根比根长呈显著的负相关,说明细根的养分储量对地上生物量的建成和生态系统功能的发挥具有重要作用.  相似文献   

8.
Nalini M. Nadkarni 《Oecologia》1994,100(1-2):94-97
Some of the proximate factors that would induce aboveground stems to produce adventitious roots were investigated experimentally on Senecio cooperi, a tropical cloud forest tree. Stem segments were air-layered with different treatments to promote root formation, and the number of roots initiated and rates of root growth were monitored for 20 weeks. Treatments were the application of wet epiphytes or dry epiphytes plus associated humus, sponges wetted with either water or nutrient solutions, or dry sponges. Controls (stem segments with nothing applied) were also monitored. Numbers of adventitious roots formed and rates of subsequent root growth differed among treatments. Wet epiphyte/humus and nutrient solutions were most effective in producing roots, which suggests that epiphytes and the nutrients they intercept and retain within the canopy may cue adjacent host tissue to exploit this resource.  相似文献   

9.
Both resource and disturbance controls have been invoked to explain tree persistence among grasses in savannas. Here we determine the extent to which competition for available resources restricts the rooting depth of both grasses and trees, and how this may influence nutrient cycling under an infrequently burned savanna near Darwin, Australia. We sampled fine roots <2 mm in diameter from 24 soil pits under perennial as well as annual grasses and three levels of canopy cover. The relative proportion of C3 (trees) and C4 (grasses) derived carbon in a sample was determined using mass balance calculations. Our results show that regardless of the type of grass both tree and grass roots are concentrated in the top 20 cm of the soil. While trees have greater root production and contribute more fine root biomass grass roots contribute a disproportional amount of nitrogen and carbon to the soil relative to total root biomass. We postulate that grasses maintain soil nutrient pools and provide biomass for regular fires that prevent forest trees from establishing while savanna trees, are important for increasing soil N content, cycling and mineralization rates. We put forward our ideas as a hypothesis of resource‐regulated tree–grass coexistence in tropical savannas.  相似文献   

10.
土壤养分异质性是竹林-阔叶林界面(bamboo and broad-leaved forest interface, 以下简称竹阔界面)的重要特征, 细根生长、周转和分解影响土壤养分供应能力, 但其在竹阔界面养分异质性形成中的贡献尚不清楚。该文选取竹阔界面两侧的毛竹(Phyllostachys pubescens)林和常绿阔叶林为研究对象, 开展土壤养分(C、N、P)含量、细根生物量及周转、细根分解及养分回归等指标的对比研究。结果表明: (1)竹阔界面两侧毛竹林和常绿阔叶林土壤养分差异明显, 毛竹林0-60 cm土壤有机碳(SOC)和土壤总氮(STN)含量分别为20.51和0.53 g·kg-1, 常绿阔叶林0-60 cm土壤有机碳(SOC)和土壤总氮(STN)含量分别为13.42和0.26 g·kg-1, 前者比后者分别高出34.53%和50.35%, 但毛竹林土壤全磷(STP)含量低于常绿阔叶林25.54%; (2)竹阔界面两侧细根生物量、养分密度及养分回归量差异明显, 毛竹林细根生物量高达1201.60 g·m-2, 是常绿阔叶林的5.86倍; 养分密度分别为591.42 g C·m-2、5.44 g N·m-2、0.25 g P·m-2, 分别是常绿阔叶林的6.12倍、3.77倍和3.11倍; 年均养分回归量分别为278.54 g C·m-2·a-1、2.36 g N·m-2·a-1、0.11 g P·m-2·a-1, 是常绿阔叶林的6.93倍、4.29倍和3.67倍; (3)细根对界面两侧土壤SOC、STN异质性形成的年均潜在贡献分别为76.79%和28.33%, 但对STP异质性形成起减缓作用, 贡献率为6.17%。这些结果说明毛竹扩张可以改变常绿阔叶林土壤的养分状况, 且细根对不同养分的异质性形成贡献不一致, 是土壤SOC、STN异质性形成的重要原因。  相似文献   

11.
Nitrogen (N) is considered the dominant limiting nutrient in temperate regions, while phosphorus (P) limitation frequently occurs in tropical regions, but in subtropical regions nutrient limitation is poorly understood. In this study, we investigated N and P contents and N:P ratios of foliage, forest floors, fine roots and mineral soils, and their relationships with community biomass, litterfall C, N and P productions, forest floor turnover rate, and microbial processes in eight mature and old-growth subtropical forests (stand age >80 yr) at Dinghushan Biosphere Reserve, China. Average N:P ratios (mass based) in foliage, litter (L) layer and mixture of fermentation and humus (F/H) layer, and fine roots were 28.3, 42.3, 32.0 and 32.7, respectively. These values are higher than the critical N:P ratios for P limitation proposed (16–20 for foliage, ca. 25 for forest floors). The markedly high N:P ratios were mainly attributed to the high N concentrations of these plant materials. Community biomass, litterfall C, N and P productions, forest floor turnover rate and microbial properties were more strongly related to measures of P than N and frequently negatively related to the N:P ratios, suggesting a significant role of P availability in determining ecosystem production and productivity and nutrient cycling at all the study sites except for one prescribed disturbed site where N availability may also be important. We propose that N enrichment is probably a significant driver of the potential P limitation in the study area. Low P parent material may also contribute to the potential P limitation. In general, our results provided strong evidence supporting a significant role for P availability, rather than N availability, in determining ecosystem primary productivity and ecosystem processes in subtropical forests of China.  相似文献   

12.
西双版纳热带季节雨林的生物量及其分配特征   总被引:12,自引:2,他引:12       下载免费PDF全文
 根据3块1 hm2 样地的调查资料,利用123株样木数据建立以胸径(D)为单变量的生物量预测方程。采用样木回归分析法(乔木层、木质藤本)和样 方收获法(灌木层、草本层), 获取西双版纳热带季节雨林的生物量,并分析了其组成和分配特征。结果表明,西双版纳热带季节雨林的总生物 量为423.908±109.702 Mg•hm-2(平均值±标准差,n=3) ,其中活体植物生物量占95.28%,粗死木质残体占4.07%,地上凋落物占 0.64%。在 其层次分配方面:乔木层优势明显,占98.09%±0.60%;其次为木质藤本,占0.83%±0.31%;灌木层和草本层生物量均小于木质藤本的生物量; 附生植物最低,仅为0.06%±0.03%。总生物量的器官分配以茎所占比例最高,达68.33%;根、枝、叶的比例分别为18.91%、11.07%和1.65 %。 乔木层生物量的径级分配主要集中于中等径级和最大径级。大树(D>70 cm)具有较高的生物量,占整个乔木层的43.67%±12.67%。树种分配方 面,生物量排序前10位的树种占乔木层总生物量的63.43%±4.09%,生物量集中分配于少量优势树种。西双版纳热带季节雨林乔木层叶面积指数 为6.39±0.85。西双版纳热带季节雨林乔木层的地上生物量位于世界热带湿润森林的中下范围。  相似文献   

13.
This paper elucidates nutrient dynamics in 5- to 8-year-oldpoplar (Populus deltoides) clone D121 plantations previouslyinvestigated for dry matter dynamics. The nutrient concentrationin different layers of the vegetation were in the order: tree> shrub > herb, whereas the standing state of nutrientswere in the order: tree > herb > shrub. Soil, litter andvegetation, respectively, accounted for 80-89, 2-3 and 9-16%of the total nutrients in the system. Considerable reductions(trees 42-54, shrubs 31-37 and herbs 15-23%) in concentrationof nutrients in leaves occurred during senescence. The uptakeof nutrients by the vegetation and also by the different components,with and without adjustment for internal recycling, has beencalculated separately. Annual transfer of litter nutrient tothe soil by vegetation was 113·7-137·6 N, 11·6-14·6P and 80·1-83·2 K kg ha-1 year-1. Turnover rateand time for different nutrients ranged between 0·72-0·89year-1 and 1·12-1·39 years, respectively. Thehigh turnover rate of litter on the forest floor indicates thegreater productivity of the stands, which was due to the higherdry matter dynamics and nutrient release for the growing vegetation.The nutrient use efficiency in poplar plantations ranged from159-175 for N, 1405-1569 for P and 295-332 for K. Compared withEucalyptus, there was a higher proportion of nutrient retranslocationin poplars largely because of higher tissue nutrient concentrations;this indicates lower nutrient use efficiency as compared tothe eucalypt plantation. Compartment models for nutrient dynamicshave been developed to represent the distribution of nutrientpools and net annual fluxes within the system.Copyright 1995,1999 Academic Press Populus deltoides plantations (Clone D121), nutrient retranslocation, net nutrient uptake, nutrient use efficiency, nutrient cycling, nutrient pool, nutrient fluxes  相似文献   

14.
Nutrient availability is widely considered to constrain primary productivity in lowland tropical forests, yet there is little comparable information for the soil microbial biomass. We assessed microbial nutrient limitation by quantifying soil microbial biomass and hydrolytic enzyme activities in a long-term nutrient addition experiment in lowland tropical rain forest in central Panama. Multiple measurements were made over an annual cycle in plots that had received a decade of nitrogen, phosphorus, potassium, and micronutrient addition. Phosphorus addition increased soil microbial carbon (13 %), nitrogen (21 %), and phosphorus (49 %), decreased phosphatase activity by ~65 % and N-acetyl β-glucosaminidase activity by 24 %, but did not affect β-glucosidase activity. In contrast, addition of nitrogen, potassium, or micronutrients did not significantly affect microbial biomass or the activity of any enzyme. Microbial nutrients and hydrolytic enzyme activities all declined markedly in the dry season, with the change in microbial biomass equivalent to or greater than the annual nutrient flux in fine litter fall. Although multiple nutrients limit tree productivity at this site, we conclude that phosphorus limits microbial biomass in this strongly-weathered lowland tropical forest soil. This finding indicates that efforts to include enzymes in biogeochemical models must account for the disproportionate microbial investment in phosphorus acquisition in strongly-weathered soils.  相似文献   

15.
Very limited information regarding fine-root growth and production of tropical dry forests is available. Fine roots and small roots are defined as rootlets with diameters < 1 mm and 1.1 to 5 mm, respectively. Live and dead fine-and small-root mass fluctuations were studied over one year by means of soil core analyses in the deciduous dry forest of Chamela, Mexico, at 19° 30, 2 km inland from the Pacific Ocean. By means of systematically varying the distance of soil core extraction points from tree stems, it was shown that random core collection is justified. A difference between fine-root biomass on south and north facing slopes was documented, although this difference was significant only during the rainy season. The live/dead ratio of fine roots was highest during the rainy period. The annual fine-root production for 1989 was estimated at 4.23 Mg ha-1 by summing significant fine-root biomass changes between sampling dates. This value is higher than most of the comparable data from other ecosystems.  相似文献   

16.
神农架巴山冷杉天然林凋落量及养分特征   总被引:5,自引:0,他引:5       下载免费PDF全文
研究了湖北神农架巴山冷杉 (Abies fargesii) 天然林凋落物量、凋落物N、P、K、Ca、Mg的含量及其归还量。结果表明:巴山冷杉天然林的年凋落量为5702.99kg·hm-2;巴山冷杉林的凋落 物组成比较丰富, 主要有落叶、落枝、球花、球果和其他5部分, 其中以落叶为多, 占总凋落量的46.00%;凋落量的月变化模式呈双峰型, 分别在2006年10~11月和2007年4~5月达到峰值;凋落物养分含量的大小顺序为:N>K>Ca>P>Mg;N、P、 K、Ca、Mg的年归还量分别为:39.1063、4.5346、13.4367、5.4965和0.0911kg·hm-2;就凋落物各组分的养分年归 还量而言, 落叶的养分归还量远远大于其余组分的养分归还量, 占总归还量的52.65%。因此, 不论凋落量还是养分归还量, 巴山冷杉林凋落物中的落叶都占绝对优势。  相似文献   

17.
Mangrove partitioning and storage of macronutrients and trace metals were examined in different arid coastal settings of Western Australia. Total living biomass in three Rhizophora stylosa forests, which ranged from 233 to 289 t DW ha-1, was significantly greater than biomass in three Avicennia marina forests (range: 79-155 t DW ha-1). Although prop roots and stems were the largest single tree components for R. stylosa and A. marina, respectively, most nutrients were stored in leaves and living roots of both species. However, only a small fraction of the total nutrient pool was vested in tree biomass; the vast bulk was in soils. A large below-ground pool of dead fine roots was identified at all stands, equivalent to 36-88% DW of total living tree biomass. The amount of Ca, S, Cl, Na, Si, Fe, Mn, Zn, B, Mo and Cu vested in dead roots of both species was greater than in the total living tree biomass. The proportion of Fe and S vested in live and dead roots was exceptionally large, consistent with previous evidence of metal plaques on mangrove roots. Sulphur, iron and zinc in dead roots of both species constituted the bulk of these metals. R. stylosa trees preferentially accumulated more Mg, S, Cl, Na, Si, Fe, Mn, B and Mo than A. marina trees. Proportionally greater storage of P, N, Ca, K, Cu and Zn occurred in two of the three A. marina forests. Foliar concentrations of Mg, S, Mn, B and Mo in mangrove leaves were at the high end of the range reported for other tropical trees, but other elemental concentrations were at the low or mid-range. Nitrogen limitation in these forests is implied by a positive correlation between total tree N and net canopy production and by a lower percentage of ecosystem N in tree biomass as compared with other forests. Unlike terrestrial forests where a large proportion of nutrient capital is vested in floor litter, most elements in these mangrove forests are stored in dead roots. A large reservoir of dead roots below the forest floor may serve as a conservation mechanism, particularly in such arid oligotrophic environments.  相似文献   

18.
We examined the initial response of the quantity and distribution of fine roots to the creation of an experimental canopy gap with a diameter of 50 m in a mature managed Norway spruce forest. Under the canopy, the fine root length densities of trees, shrubs, and grasses and herbs were 3207, 707 and 2738 m m–2, respectively. The fine root biomass of trees, shrubs, and grasses and herbs were 182, 47 and 52 g m–2, respectively. Two growing seasons after gap creation hardly any fine tree roots were found in the middle part of the gap. The living tree roots in the gap edge zone were mainly located within a 5-m distance from the standing edge trees. The indices developed here to show the influence of trees on fine root lenght density clearly revealed the effect of the vicinity of living trees on fine root lenght density. The root densities of grasses, herbs and dwarf shrubs did not show a clear response to gap creation despite the increase of their foliage. Our results suggest that in boreal spruce forests a gap disturbance creates a distinct tree root gap and that the gap edge trees do not extend their root systems rapidly into the formed root gap.  相似文献   

19.
This paper deals with nutrient dynamics in 2- to 8-year-oldplantations of Eucalyptus tereticornis Sm. previously investigatedfor dry matter dynamics. The nutrient concentrations changedin the order: herb > shrub > tree. The nutrient concentrationsin the different components of these vegetation types also decreasedwith plantation age. The nutrient content in trees and shrubsincreased and in herbs it decreased with increase in plantationage. The uptake of nutrients by vegetation and also by componentswith or without adjustment for retranslocation, has been calculatedseparately. Turnover time for different nutrients ranged between1.05 and 1.35 years. Compartmental models for nutrient dynamicshave been developed to represent the distribution of nutrientcontents and net annual fluxes within the system. Eucalyptus tereticornis plantation, nutrient concentration, standing state, uptake, turnover, nutrient cycling  相似文献   

20.
西双版纳原始热带季节雨林生物量研究   总被引:6,自引:0,他引:6       下载免费PDF全文
郑征  刘宏茂  刘伦辉  曹敏  冯志立   《广西植物》1999,19(4):309-314
用标准木回归分析法( 乔木、木质藤本) 和样方收获法( 灌木、草本) , 研究了西双版纳原始热带季节雨林生物量及其分配。雨林总生物量为692-590 t/hm2 , 其分配为: 乔木层占98-66 % 、灌木层占0-76 % 、木质藤本占0-50 % 、草本层占0-09 % , 生物量主要集中于乔木层。乔木层生物量的器官分配向树干和树根集中: 树干占69-80 % , 树根占21-56 % , 树枝占7-77 % ,树叶占0-77 % ; 生物量径级分配向中等径级(60 ~70 cm) 和最大径级(150 ~160 cm) 集中; 生物量垂直分配向上层集中; Ⅰ亚层( 高度> 40 m) 占60-55 % 、Ⅱ亚层(20 ~40 m) 占36-72 % 、Ⅲ亚层(3 ~20 m) 占2-73 % ; 优势种番龙眼生物量占乔木层的20-07 % ; 乔木层叶面积指数为6-91 。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号