首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Schr?dinger stated in his landmark book, What is Life?, that life feeds on negative entropy. In this contribution, the validity of this statement is discussed through a careful thermodynamic analysis of microbial growth processes. In principle, both feeding on negative entropy, i.e. yielding products of higher entropy than the substrates, and generating heat can be used by microorganisms to rid themselves of internal entropy production resulting from maintenance and growth processes. Literature data are reviewed in order to compare these two mechanisms. It is shown that entropy-neutral, entropy-driven, and entropy-retarded growth exist. The analysis of some particularly interesting microorganisms shows that enthalpy-retarded microbial growth may also exist, which would signify a net uptake of heat during growth. However, the existence of endothermic life has never been demonstrated in a calorimeter. The internal entropy production in live cells also reflects itself in the Gibbs energy dissipation accompanying growth, which is related quantitatively to the biomass yield. An empirical correlation of the Gibbs energy dissipation in terms of the physico-chemical nature of the growth substrate has been proposed in the literature and can be used to predict the biomass yield approximately. The ratio of enthalpy change and Gibbs energy change can also be predicted since it is shown to be approximately equal to the same ratio of the relevant catabolic process alone.  相似文献   

2.
Recently we have described the design and operation of a miniature bioreactor system in which 4-16 fermentations can be performed (Gill et al., Biochem Eng J 39:164-176, 2008). Here we report on the use of thermal profiling techniques for parallel on-line monitoring of cell growth in these bioreactors based on the natural heat generated by microbial culture. Results show that the integrated heat profile during E. coli TOP10 pQR239 fermentations followed the same pattern as off-line optical density (OD) measurements. The maximum specific growth rates calculated from off-line OD and on-line thermal profiling data were in good agreement, at 0.66+/-0.04 and 0.69+/-0.05 h(-1) respectively. The combination of a parallel miniature bioreactor system with a non-invasive on-line technique for estimation of culture kinetic parameters provides a valuable approach for the rapid optimisation of microbial fermentation processes.  相似文献   

3.
Calorimetric investigation of aerobic fermentations   总被引:2,自引:0,他引:2  
A modified bench scale calorimeter has been employed to determine the heat generated by various microbial strains growing on a range of different substrates, covering degrees of reduction from 3 to 6.13. The results are analyzed, and interpreted in the light of coupled enthalpy and elemental balances. The heat released by the microbial cultures has been found to correlate linearly with other process variables, such as biomass generation and oxygen uptake. The ratio between the heat generated and the biomass formed, the so-called "heat yield" (Y(Q/x)), has been shown both on theoretical and experimental grounds to increase with increasing degree of reduction of the substrate and to decrease with increasing biomass yield. The two effects could be combined into a simple model which permits the amount of heat released per unit of biomass formed to be predicted from the degree of reduction of the substrate as the only independent variable. The ratio between the heat generated and the oxygen taken up was constant at 440 kJ (mol O(2))(-1) throughout all experiments as expected from theoretical considerations for strongly aerobic processes.  相似文献   

4.
Currently new ground reinforcement techniques are being developed based on microbially induced carbonate precipitation (MICP). Many studies on MICP use microbially catalyzed hydrolysis of urea to produce carbonate. In the presence of dissolved calcium this process leads to precipitation of calcium carbonate crystals, which form bridges between the sand grains and hence increase strength and stiffness. In addition to urea hydrolysis, there are many other microbial processes which can lead to the precipitation of calcium carbonate. In this study the theoretical feasibility of these alternative MICP processes for ground reinforcement is evaluated. Evaluation factors are substrate solubility, CaCO3 yield, reaction rate and type and amount of side-product. The most suitable candidate as alternative MICP method for sand consolidation turned out to be microbial denitrification of calcium nitrate, using calcium salts of fatty acids as electron donor and carbon source. This process leads to calcium carbonate precipitation, bacterial growth and production of nitrogen gas and some excess carbon dioxide. The feasibility of MICP by denitrification is tested experimentally in liquid batch culture, on agar plate and in sand column experiments. Results of these experiments are presented and discussed.  相似文献   

5.
6.
Recent advances in microbial mining   总被引:2,自引:0,他引:2  
Microbial mining of copper sulphide ores, has been practiced on an industrial scale since the late 1950s. Since then, advances in microbial mining and the role of microorganisms involved in solubilization of metals have assumed commerical importance. The fact that bioleaching processes save energy, have a minimum pollution potential and are able to yield value-added by-products make these processes invaluable. The metal extraction processes using microorganisms, which are currently in active use, concern copper and uranium bioleaching. Biobeneficiation is also applied at an industrial scale for recovery of gold from arsenopyrites. The developments in these processes during the last 15 years, with particular reference to developing nations, are reviewed. Information gathered on molecular genetics of these microorganisms should lead to a better understanding and control of microbial leaching processes. Areas still needing research to sustain economic expansion of microbial mining techniques are indicated.The author is with the Agharkar Research Institute, Agarkar Road, Pune 411 004, India  相似文献   

7.
The exploitation of microorganisms in natural or technological systems calls for monitoring tools that reflect their metabolic activity in real time and, if necessary, are flexible enough for field application. The Gibbs energy dissipation of assimilated substrates or photons often in the form of heat is a general feature of life processes and thus, in principle, available to monitor and control microbial dynamics. Furthermore, the combination of measured heat fluxes with material fluxes allows the application of Hess' law to either prove expected growth stoichiometries and kinetics or identify and estimate unexpected side reactions. The combination of calorimetry with respirometry is theoretically suited for the quantification of the degree of coupling between catabolic and anabolic reactions. New calorimeter developments overcome the weaknesses of conventional devices, which hitherto limited the full exploitation of this powerful analytical tool. Calorimetric systems can be integrated easily into natural and technological systems of interest. They are potentially suited for high-throughput measurements and are robust enough for field deployment. This review explains what information calorimetric analyses provide; it introduces newly emerging calorimetric techniques and it exemplifies the application of calorimetry in different fields of microbial research.  相似文献   

8.
Lactic acid and 3-hydroxypropanoic acid are industrially relevant microbial products. This paper reviews the current knowledge on export of these compounds from microbial cells and presents a theoretical analysis of the bioenergetics of different export mechanisms. It is concluded that export can be a key constraint in industrial production, especially under the conditions of high product concentration and low extracellular pH that are optimal for recovery of the undissociated acids. Under these conditions, the metabolic energy requirement for product export may equal or exceed the metabolic energy yield from product formation. Consequently, prolonged product formation at low pH and at high product concentrations requires the involvement of alternative, ATP-yielding pathways to sustain growth and maintenance processes, thereby reducing the product yield on substrate. Research on export mechanisms and energetics should therefore be an integral part of the development of microbial production processes for these and other weak acids.  相似文献   

9.
A nonisothermal flow calorimeter operating directly in the fermenter was used for heat flow measurements of aerobic microbial growth processes with high biomass productivities. The measuring arrangement makes it possible to describe transitional stages of aerobic yeast cell growth by the ratio of heat production to oxygen consumption (oxy-caloric coefficient). The oxy-caloric coefficient was not constant under the described conditions. The results refer to the existence of an additional energy-delivering mechanism in microbial systems with aerobic carbon source utilization. The mechanism can involve polyphosphate bond division coupled to biomass synthesis.  相似文献   

10.
Plant-microbe interactions to probe regulation of plant carbon metabolism   总被引:1,自引:1,他引:0  
Plant growth and development is dependent on coordinated assimilate production, distribution and allocation. Application of biochemical and molecular techniques substantially contributed to a better understanding of these processes, although the underlying regulatory mechanisms are still not fully elucidated and attempts to improve crop yield by modulating carbon partitioning were only partially successful. Plant pathogens also interfere with source–sink interaction. To this end they have evolved a wide range of sophisticated strategies to allow their systemic spread, suppression of plant defence and induction of sink function to support nutrient acquisition for their growth. Studying compatible interactions of plants and pathogens like viruses, bacteria and fungi can be exploited to investigate different levels of source–sink regulation. The identification of microbial factors and their host targets involved in regulation of plant primary metabolism may allow developing novel strategies to increase crop yield. Here we will discuss recent studies on plant–microbe interactions aimed at elucidating mechanisms of compatibility.  相似文献   

11.
The calculation of parameters involved in the kinetics of the microbial soil reactions linked to the carbon cycle is strongly limited by the methodologies employed. Hence, a mathematical model is proposed to quantify easily the specific rate of catabolic activity A(c) by microcalorimetry based on Belaich's model. It permits to quantify A(c) from the plots of the heat flow rate vs. time recorded from soil samples amended with glucose. It was applied for several soil samples collected in the Amazon. The results obtained were compared, and statistical and graphical analyses were used to provide the biophysical significance of A(c) in soils. Results suggest that A(c) could be used as an empirical measure of stress. It correlates positively with the heat yield, Y(Q/X), of the soil microbial growth reactions, indicating that higher specific rates of catabolic activity cause higher dissipation of energy per unit of cell, yielding less-efficient metabolic reactions, which could affect negatively the soil quality. It is strongly affected by the initial microbial population and by the percentage of nitrogen in the samples. The statistical analysis also demonstrated that A(c) is more sensitive to changing environmental conditions than Y(Q/X), yielding more-accurate information about the soil metabolic processes.  相似文献   

12.
To answer the intriguing question whether or not endothermic microbial growth exists, and in particular, to verify Heijnen and van Dijken's prediction (1992), acetotrophic methanogen, Methanosarcina barkeri, has been cultivated in a highly sensitive bench-scale calorimeter (an improved Bio-RC1 reaction calorimeter) in a pH auxostat fashion. A growth yield of 0.043 C-mol C-mol(-1) has been obtained and a cell density as high as 3 g L(-1) was attained. Heat uptake during growth has indeed been quantitatively measured with calorimetry, resulting in a heat yield of +145 kJ C-mol(-1). Thermodynamics of the growth of acetotrophic methanogens was analyzed in detail. The changes in Gibbs energy, enthalpy, and entropy during growth of M. barkeri were compared with some typical aerobic and anaerobic growth processes of different microorganisms on various substrates. In the growth of M. barkeri on acetate, the retarding effect of the positive enthalpy change on the driving force of growth is overcompensated by the large positive entropy change, resulting from converting one organic molecule (acetic acid) to two gaseous products, CH(4) and CO(2). Both the enthalpy and the entropy increases are due partially to the transition of these two products into the gaseous phase. The thermodynamic role of this phase transition for the growth process is analyzed. Microbial growth characterized by enthalpy increase and correspondingly by a large increase in entropy may be called enthalpy-retarded growth.  相似文献   

13.
Many historical attempts to increase the yield of biotechnological processes have been at best semi-empirical. However, given the availability of modern techniques of genetic and protein engineering, the question arises as to how one might rationally seek to choose the most suitable genes to clone and/or modify for this purpose. The metabolic control theory of Kaeser, Burns, Heinrich and Rapoport allows one to decide quantitatively which enzymatic steps are (most) rate-determining to the flux through desired pathways (and why). An extension of these principles allows one rationally to identify optimal strategies for the improvement of microbial processes.  相似文献   

14.
Nutraceuticals are food substances with medical and health benefits for humans. Limited by complicated procedures, high cost, low yield, insufficient raw materials, resource waste, and environment pollution, chemical synthesis and extraction are being replaced by microbial synthesis of nutraceuticals. Many microbial strains that are generally regarded as safe (GRAS) have been identified and developed for the synthesis of nutraceuticals, and significant nutraceutical production by these strains has been achieved. In this review, we systematically summarize recent advances in nutraceutical research in terms of physiological effects on health, potential applications, drawbacks of traditional production processes, characteristics of production strains, and progress in microbial fermentation. Recent advances in systems and synthetic biology techniques have enabled comprehensive understanding of GRAS strains and its wider applications. Thus, these microbial strains are promising cell factories for the commercial production of nutraceuticals.  相似文献   

15.
The interest in improving the yield and productivity values of relevant microbial fermentations is an increasingly important issue for the scientific community. Therefore, several strategies have been tested for the stimulation of microbial growth and manipulation of their metabolic behavior. One promising approach involves the performance of fermentative processes during non-conventional conditions, which includes high pressure (HP), electric fields (EF) and ultrasound (US). These advanced technologies are usually applied for microbial inactivation in the context of food processing. However, the approach described in this study focuses on the use of these technologies at sub-lethal levels, since the aim is microbial growth and fermentation under these stress conditions. During these sub-lethal conditions, microbial strains develop specific genetic, physiologic and metabolic stress responses, possibly leading to fermentation products and processes with novel characteristics. In some cases, these modifications can represent considerable improvements, such as increased yields, productivities and fermentation rates, lower accumulation of by-products and/or production of different compounds. Although several studies report the successful application of these technologies during the fermentation processes, information on this subject is still scarce and poorly understood. For that reason, the present review paper intends to assemble and discuss the main findings reported in the literature to date, and aims to stimulate interest and encourage further developments in this field.  相似文献   

16.
Two methods of investigation were used to evaluate the heat quantity associated with anabolic processes (qan) during the aerobic growth of Escherichia coli in a minimal medium containing succinic acid as the sole energy and carbon source. The study of the contribution of biosynthetic reactions from succinic acid and ammonia were investigated by both methods. The two qan values obtained were in excellent agreement and were found to be significant. Thus it was demonstrated that the contribution of anabolism strongly influenced the quantity of heat associated with microbial aerobic growth. The qan calculated as above explained the experimental enthalpy change which was recently reported.  相似文献   

17.
高程  郭良栋 《生物多样性》2022,30(10):22429-23168
微生物主要包括细菌、真菌、古菌、病毒等类群, 是地球上出现时间最早、分布最广泛、个体数量最多, 以及物种和基因多样性十分丰富的生物类群。为了适应各种生境, 微生物衍生出腐生、寄生、共生等多样的生存策略, 在生物地球化学循环、生态系统演替与稳定性、环境修复以及人类健康等方面发挥着重要作用。传统的微生物监测方法限制了我们对微生物多样性的认知; 但是, 近年来高通量测序技术和生物信息学的发展极大推动了微生物多样性的研究进展。本文概述了近年来在微生物多样性分布格局与维持、群落构建以及功能属性多样性的最新进展; 总结分析了细菌、古菌、真菌的多样性纬度分布格局及其驱动因子, 选择、扩散、成种、漂变等过程对细菌、古菌、真菌的群落构建的贡献, 以及细菌和真菌的形态、生理生化、生长繁殖、扩散、基因组等功能性状的多样性; 提出了未来微生物多样性研究的重要领域: 环境宏真菌组研究, 微生物多样性与生态系统多功能性的关系研究, 以及微生物互作网络的生态功能研究。  相似文献   

18.
A mathematical model which integrates empirically derived microbial growth kinetics with heat and mass transfer phenomena and substrate degradation kinetics has been developed to capture the dynamics of the aerobic composting of a switchgrass and dog food mixture over a period of 64 h. The model incorporated three microbial populations of yeasts, bacteria and fungi that metabolized composting material consisting of sugars and starches, cellulose and hemicelluloses to produce heat and utilize oxygen in a static, cylindrical reactor employing forced aeration. Model predictions captured well the dynamics obtained experimentally between physical and microbial variables and the model has the potential to become a predictive tool for substrate degradation during aerobic composting processes.  相似文献   

19.
Innovative fermentation processes are necessary for the cost-effective production of bulk chemicals from renewable resources. Current microbial processes are either anaerobic processes, with high yield and productivity, or less-efficient aerobic processes. Oxygen utilization plays an important role in energy generation and redox metabolism that is necessary for product formation. The aerobic productivity, however, is relatively low because of rate-limiting volumetric oxygen transfer; whereas the product yield in the presence of oxygen is generally low because part of the substrate is completely oxidized to CO?. Hence, new microbial conversion processes for the production of bulk chemicals should be anaerobic. In this opinion article, we describe different scenarios for the development of highly efficient microbial conversion processes for the anaerobic production of bulk chemicals.  相似文献   

20.
The label-free detection of microbial cells attached to a surface is an active field of research. The field is driven by the need to understand and control the growth of biofilms in a number of applications, including basic research in natural environments, industrial facilities, and clinical devices, to name a few. Despite significant progress in the ability to monitor the growth of biofilms and related living cells, the sensitivity and selectivity of such sensors are still a challenge. We believe that among the many different technologies available for monitoring biofilm growth, optical techniques are the most promising, as they afford direct imaging and offer high sensitivity and specificity. Furthermore, as each technique offers different insights into the biofilm growth mechanism, our analysis allows us to provide an overview of the biological processes at play. In addition, we use a set of key parameters to compare state-of-the-art techniques in the field, including a critical assessment of each method, to identify the most promising types of sensors. We highlight the challenges that need to be overcome to improve the characteristics of current biofilm sensor technologies and indicate where further developments are required. In addition, we provide guidelines for selecting a suitable sensor for detecting microbial cells on a surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号