共查询到20条相似文献,搜索用时 0 毫秒
1.
Two pairs of sympatric three‐spined stickleback Gasterosteus aculeatus morphs and two single morph populations inhabiting mud and lava or rocky benthic habitats in four Icelandic lakes were screened for parasites and genotyped for MHC class IIB diversity. Parasitic infection differed consistently between G. aculeatus from different benthic habitats. Gasterosteus aculeatus from the lava or rocky habitats were more heavily infected in all lakes. A parallel pattern was also found in individual MHC allelic variation with lava G. aculeatus morphs exhibiting lower levels of variation than the mud morphs. Evidence for selective divergence in MHC allele number is ambiguous but supported by two findings in addition to the parallel pattern observed. MHC allele diversity was not consistent with diversity reported at neutral markers (microsatellites) and in Þingvallavatn the most common number of alleles in each morph was associated with lower infection levels. In the Þingvallavatn lava morph, lower infection levels by the two most common parasites, Schistocephalus solidus and Diplostomum baeri, were associated with different MHC allele numbers. 相似文献
2.
Christophe Eizaguirre Tobias L. Lenz Arne Traulsen Manfred Milinski 《Ecology letters》2009,12(1):5-12
Speciation and the maintenance of recently diverged species has been subject of intense research in evolutionary biology for decades. Although the concept of ecological speciation has been accepted, its mechanisms and genetic bases are still under investigation. Here, we present a mechanism for speciation that is orchestrated and strengthened by parasite communities acting on polymorphic genes of the immune system. In vertebrates, these genes have a pleiotropic role with regard to parasite resistance and mate choice. In contrasting niches, parasite communities differ and thus the pools of alleles of the adapted major histocompatibility complex (MHC) also differ between niches. Mate choice for the best-adapted MHC genotype will favour local adaptations and will accelerate separation of both populations: thus immune genes act as pleiotropic speciation genes –'magic traits'. This mechanism should operate not only in sympatric populations but also under allopatry or parapatry. Each individual has a small subset of the many MHC alleles present in the population. If all individuals could have all MHC alleles from the pool, MHC-based adaptation is neither necessary nor possible. However, the typically small optimal individual number of MHC loci thus enables MHC-based speciation. Furthermore, we propose a new mechanism selecting against species hybrids. Hybrids are expected to have super-optimal individual MHC diversity and should therefore suffer more from parasites in all habitats. 相似文献
3.
Comparative studies of major histocompatibility complex (MHC) genes across vertebrate species can reveal the evolutionary processes that shape the structure and function of immune regulatory proteins. In this study, we characterized MHC class I sequences from six frog species representing three anuran families (Hylidae, Centrolenidae and Ranidae). Using cDNA from our focal species, we amplified a total of 79 unique sequences spanning exons 2-4 that encode the extracellular domains of the functional alpha chain protein. We compared intra- and interspecific nucleotide and amino-acid divergence, tested for recombination, and identified codon sites under selection by estimating the rate of non-synonymous to synonymous substitutions with multiple codon-based maximum likelihood methods. We determined that positive (diversifying) selection was acting on specific amino-acid sites located within the domains that bind pathogen-derived peptides. We also found significant signals of recombination across the physical distance of the genes. Finally, we determined that all the six species expressed two or three putative classical class I loci, in contrast to the single locus condition of Xenopus laevis. Our results suggest that MHC evolution in anurans is a dynamic process and that variation in numbers of loci and genetic diversity can exist among taxa. Thus, the accumulation of genetic data for more species will be useful in further characterizing the relative importance of processes such as selection, recombination and gene duplication in shaping MHC loci among amphibian lineages. 相似文献
4.
Major histocompatibility complex polymorphism: dynamics and consequences of parasite-mediated local adaptation in fishes 总被引:1,自引:0,他引:1
Parasitism is a common form of life and represents a strong selective pressure for host organisms. In response to this evolutionary pressure, vertebrates have developed genetically coded defences such as the major histocompatibility complex (MHC). Mechanisms of parasite-mediated selection not only maintain outstanding polymorphism in these genes but have also been proposed to further promote host population divergence and ultimately speciation because it can drive evolution of local adaptation in which MHC genes play a crucial role. This review first highlights the dynamics and complexity of parasite-mediated selection in natural systems, which not only depends on dominating parasite strategies and on the taxonomic diversity of the parasite community but also includes the differences in parasite communities between habitats and niches, creating divergent selection on locally adapted populations. Then the different ways in which MHC genes potentially allow vertebrates to respond to these dynamics and to adapt locally are outlined. Finally, it is proposed that varying selection strength in time and space may lead to variation in the strength of precopulatory reproductive isolation which has evolved to maintain local adaptation. 相似文献
5.
6.
Interactions with parasites may promote the evolution of disassortative mating in host populations as a mechanism through which genetically diverse offspring can be produced. This possibility has been confirmed through simulation studies and suggested for some empirical systems in which disassortative mating by disease resistance genotype has been documented. The generality of this phenomenon is unclear, however, because existing theory has considered only a subset of possible genetic and mating scenarios. Here we present results from analytical models that consider a broader range of genetic and mating scenarios and allow the evolution of non-random mating in the parasite as well. Our results confirm results of previous simulation studies, demonstrating that coevolutionary interactions with parasites can indeed lead to the evolution of host disassortative mating. However, our results also show that the conditions under which this occurs are significantly more fickle than previously thought, requiring specific forms of infection genetics and modes of non-random mating that do not generate substantial sexual selection. In cases where such conditions are not met, hosts may evolve random or assortative mating. Our analyses also reveal that coevolutionary interactions with hosts cause the evolution of non-random mating in parasites as well. In some cases, particularly those where mating occurs within groups, we find that assortative mating evolves sufficiently to catalyze sympatric speciation in the interacting species. 相似文献
7.
Sera from 287 sheep were screened for cytotoxic antibodies against sheep lymphocytes. Forty four antisera were selected which provisionally define 13 lymphocyte antigens. The frequency of these antigens was studied in 305 sheep from 8 flocks of different breeds. Family studies confirm that inheritance of sheep lymphocyte antigens is controlled by the autosomal codominant genes of at least 2 linked loci. 相似文献
8.
D. H. Cornwall J. L. Kubinak E. Zachary D. L. Stark D. Seipel W. K. Potts 《Journal of evolutionary biology》2018,31(2):314-322
The virulence levels attained by serial passage of pathogens through similar host genotypes are much higher than observed in natural systems; however, it is unknown what keeps natural virulence levels below these empirically demonstrated maximum levels. One hypothesis suggests that host diversity impedes pathogen virulence, because adaptation to one host genotype carries trade‐offs in the ability to replicate and cause disease in other host genotypes. To test this hypothesis, with the simplest level of population diversity within the loci of the major histocompatibility complex (MHC), we serially passaged Friend virus complex (FVC) through two rounds, in hosts with either the same MHC genotypes (pure passage) or hosts with different MHC genotypes (alternated passage). Alternated passages showed a significant overall reduction in viral titre (31%) and virulence (54%) when compared to pure passages. Furthermore, a resistant host genotype initially dominated any effects due to MHC diversity; however, when FVC was allowed to adapt to the resistant host genotype, predicted MHC effects emerged; that is, alternated lines show reduced virulence. These data indicate serial exposure to diverse MHC genotypes is an impediment to pathogen adaptation, suggesting genetic variation at MHC loci is important for limiting virulence in a rapidly evolving pathogen and supports negative frequency‐dependent selection as a force maintaining MHC diversity in host populations. 相似文献
9.
Piotr Minias; 《Molecular ecology》2024,33(15):e17453
The major histocompatibility complex (MHC) multigene family encodes key pathogen-recognition molecules of the vertebrate adaptive immune system. Hyper-polymorphism of MHC genes is de novo generated by point mutations, but new haplotypes may also arise by re-shuffling of existing variation through intra- and inter-locus gene conversion. Although the occurrence of gene conversion at the MHC has been known for decades, we still have limited understanding of its functional importance. Here, I took advantage of extensive genetic resources (~9000 sequences) to investigate broad scale macroevolutionary patterns in gene conversion processes at the MHC across nearly 200 avian species. Gene conversion was found to constitute a universal mechanism in birds, as 83% of species showed footprints of gene conversion at either MHC class and 25% of all allelic variants were attributed to gene conversion. Gene conversion processes were stronger at MHC-II than MHC-I, but inter-specific variation at both MHC classes was explained by similar evolutionary scenarios, reflecting fluctuating selection towards different optima and drift. Gene conversion showed uneven phylogenetic distribution across birds and was driven by gene copy number variation, supporting significant role of inter-locus gene conversion processes in the evolution of the avian MHC. Finally, MHC gene conversion was stronger in species with fast life histories (high fecundity) and in long-distance migrants, likely reflecting variation in population sizes and host–pathogen coevolutionary dynamics. The results provide a robust comparative framework for understanding macroevolutionary variation in gene conversion at the avian MHC and reinforce important contribution of this mechanism to functional MHC diversity. 相似文献
10.
R. W. BULL H. A. LEWIN M. C. WU K. PETERBAUGH D. ANTCZAK D. BERNOCO S. CWIK L. DAM C. DAVIES R. L. DAWKINS J. H. DUFTY J. GERLACH H. C. HINES S. LAZARY W. LEIBOLD H. LEVEZIEL
. LIE P. G. LINDBERG D. MEGGIOLARO E. MEYER R. OLIVER M. ROSS M. SIMON R. L. SPOONER M. J. STEAR A. J. TEALE J. W. TEMPLETON 《Animal genetics》1989,20(2):109-132
Summary. Two hundred and eighty-two alloantisera were submitted by 20 participating laboratories from 13 countries and tested against lymphocytes of 1298 cattle. The cell panel consisted of samples from 38 Bos taurus breeds, 11 Bos taurus crossbreeds, 4 Bos indicus breeds, 6 Bos taurus X Bos indicus , and a variety of other crossbred populations. Using a standardized lymphocytotoxicity test, all 17 previously identified BoLA specificities were confirmed. The workshop produced agreement on 16 new lymphocyte alloantigenic specificities. Three of the new specificities behaved as splits of previously identified BoLA specificities. Four of the new specificities behaved as alleles at the agreed BoLA-A locus. Seven new specificities are tentatively assigned to the BoLA-A locus but require further definition. Two new specificities may represent products of a second closely-linked BoLA locus. 相似文献
11.
Traul DL Li H Dasgupta N O'Toole D Eldridge JA Besser TE Davies CJ 《Animal genetics》2007,38(2):141-146
The Rhadinovirus ovine herpesvirus-2 (OvHV-2) is the most common causative agent of malignant catarrhal fever (MCF) in clinically susceptible ruminants including cattle and bison. American bison (Bison bison) are highly susceptible to clinical MCF. Nevertheless, approximately 20% of bison on ranches or in feedlots become infected with the virus without developing clinical disease. Defining the genetic basis for differences in susceptibility between bison could facilitate development of improved control strategies for MCF. One genetic region that influences susceptibility to infectious diseases is the major histocompatibility complex (MHC). In this study, a Bison bison (Bibi) DRB3 oligonucleotide microarray was used to type 189 bison from 10 herds where MCF outbreaks had occurred. Binary logistic regression was used to classify DRB3 alleles as resistant (R), susceptible (S) or neutral (N). Animals were reclassified using six DRB3 genotype categories: N/N, N/R, N/S, R/S, R/R and S/S. Analysis of homogeneity across herds showed that there was a herd effect. Consequently, a penalized logistic regression model was run with herd and genotype categories as the explanatory variables. The R/R genotype was associated with resistance to MCF (P = 0.0327), while the S/S genotype was associated with clinical MCF (P = 0.0069). This is the first evidence that MHC class IIa polymorphism is associated with resistance or susceptibility to OvHV-2-induced MCF. 相似文献
12.
M. Tobler M. Plath R. Riesch I. Schlupp A. Grasse G. K. Munimanda C. Setzer D. J. Penn Y. Moodley 《Journal of evolutionary biology》2014,27(5):960-974
The unprecedented polymorphism in the major histocompatibility complex (MHC) genes is thought to be maintained by balancing selection from parasites. However, do parasites also drive divergence at MHC loci between host populations, or do the effects of balancing selection maintain similarities among populations? We examined MHC variation in populations of the livebearing fish Poecilia mexicana and characterized their parasite communities. Poecilia mexicana populations in the Cueva del Azufre system are locally adapted to darkness and the presence of toxic hydrogen sulphide, representing highly divergent ecotypes or incipient species. Parasite communities differed significantly across populations, and populations with higher parasite loads had higher levels of diversity at class II MHC genes. However, despite different parasite communities, marked divergence in adaptive traits and in neutral genetic markers, we found MHC alleles to be remarkably similar among host populations. Our findings indicate that balancing selection from parasites maintains immunogenetic diversity of hosts, but this process does not promote MHC divergence in this system. On the contrary, we suggest that balancing selection on immunogenetic loci may outweigh divergent selection causing divergence, thereby hindering host divergence and speciation. Our findings support the hypothesis that balancing selection maintains MHC similarities among lineages during and after speciation (trans‐species evolution). 相似文献
13.
E. H. M. Sterck R. E. Bontrop N. de Groot A. J. M. de Vos‐Rouweler G. G. M. Doxiadis 《Molecular ecology》2017,26(14):3785-3793
The heterozygosity status of polymorphic elements of the immune system, such as the major histocompatibility complex (MHC), is known to increase the potential to cope with a wider variety of pathogens. Pre‐ and postcopulatory processes may regulate MHC heterozygosity. In a population where mating occurs among individuals that share identical MHC haplotypes, postcopulatory selection may disfavour homozygous offspring or ones with two MHC haplotypes identical to its mother. We tested these ideas by determining the incidence of MHC‐heterozygous and MHC‐homozygous individuals in a pedigreed, partially consanguineous captive rhesus monkey colony. Bayesian statistics showed that when parents share MHC haplotypes, the distribution of MHC‐heterozygous and MHC‐homozygous individuals significantly fitted the expected Mendelian distribution, both for the complete MHC haplotypes, and for MHC class I or II genes separately. Altogether, we found in this captive colony no evidence for postcopulatory selection against MHC‐homozygous individuals. However, the distribution of paternally and maternally inherited MHC haplotypes tended to differ significantly from expected. Individuals with two MHC haplotypes identical to their mother were underrepresented and offspring with MHC haplotypes identical to their father tended to be overrepresented. This suggests that postcopulatory processes affect MHC haplotype combination in offspring, but do not prevent low MHC heterozygosity. 相似文献
14.
Lymphocyte antigens in sheep 总被引:1,自引:0,他引:1
This paper describes the detection of 13 lymphocyte antigens in sheep. The results obtained from family studies are consistent with the hypothesis that at least 12 antigens are under the control of a single genetic system. The distribution of antigens in the population suggests that the system contains two loci. The 13 antigens were compared with those previously reported. Only one additional specificity was found. 相似文献
15.
Alexandra L. DeCandia Kristin E. Brzeski Elizabeth Heppenheimer Catherine V. Caro Glauco Camenisch Peter Wandeler Carlos Driscoll Bridgett M. vonHoldt 《Ecology and evolution》2019,9(4):2046-2060
Urbanization is driving environmental change on a global scale, creating novel environments for wildlife to colonize. Through a combination of stochastic and selective processes, urbanization is also driving evolutionary change. For instance, difficulty in traversing human‐modified landscapes may isolate newly established populations from rural sources, while novel selective pressures, such as altered disease risk, toxicant exposure, and light pollution, may further diverge populations through local adaptation. Assessing the evolutionary consequences of urban colonization and the processes underlying them is a principle aim of urban evolutionary ecology. In the present study, we revisited the genetic effects of urbanization on red foxes (Vulpes vulpes) that colonized Zurich, Switzerland. Through use of genome‐wide single nucleotide polymorphisms and microsatellite markers linked to the major histocompatibility complex (MHC), we expanded upon a previous neutral microsatellite study to assess population structure, characterize patterns of genetic diversity, and detect outliers associated with urbanization. Our results indicated the presence of one large evolutionary cluster, with substructure evident between geographic sampling areas. In urban foxes, we observed patterns of neutral and functional diversity consistent with founder events and reported increased differentiation between populations separated by natural and anthropogenic barriers. We additionally reported evidence of selection acting on MHC‐linked markers and identified outlier loci with putative gene functions related to energy metabolism, behavior, and immunity. We concluded that demographic processes primarily drove patterns of diversity, with outlier tests providing preliminary evidence of possible urban adaptation. This study contributes to our overall understanding of urban colonization ecology and emphasizes the value of combining datasets when examining evolutionary change in an increasingly urban world. 相似文献
16.
17.
Major histocompatibility complex (MHC) antigens bind peptides of diverse sequences with high affinity. They do this in order to generate maximal immunological protection by covering the spectrum of peptides that may be seen by a host over the course of its lifetime. However, in many circumstances the immune system does not recognize a particular peptide that it should for maximum advantage over the pathogen. In other situations, the immune system goes awry and incorrectly recognizes a self-peptide that it should not. This results in disease characterized by recognition and attack of self. Rheumatoid arthritis is an example of just such a disease. In either of these situations, peptide-based modalities for immune therapy would be an advantage. However, peptide-based therapies require a thorough understanding of the forces involved in peptide binding. Great strides have been made in elucidating the mechanisms by which these MHC proteins may bind peptides with diverse sequences and high affinity. This review summarizes the current data obtained from crystallographic analyses of peptide binding for both class I and class II MHC molecules. Unfortunately, as yet these data have not allowed us to predict which peptides will bind with high affinity to a specific MHC molecule. © 1997 John Wiley & Sons, Inc. Biopoly 43: 281–302, 1997 相似文献
18.
A second locus and new alleles in the major histocompatibility complex class II (ELA-DQB) region in the horse 总被引:1,自引:0,他引:1
More than two nucleotide sequences of the second exon of the ELA-DQB region retrieved from a single animal and two different sequences isolated from horses homozygous in the major histocompatibility complex (MHC) region by descent indicated the existence of at least two ELA-DQB loci at the genomic level. New alleles detected by polymerase chain reaction single strand conformation polymorphism (SSCP) and defined by nucleotide sequencing of the second exon of the DQB gene(s) were described. Based on the level of nucleotide sharing, at least two groups of alleles were shown to exist. The newly defined alleles belonged preferentially to one of the groups. However, their specific locus assignment was not possible from the data collected. At least one of these alleles was shown to be transcribed. No frame-shift mutations were identified among the new alleles, although one pseudoallele containing a stop codon was identified at the genomic DNA level. 相似文献
19.
Altogether, 292 goat alloantisera were screened for antilymphocyte reactivity in a two-step dye exclusion microcytotoxicity test. Fifteen different lymphocyte antigen specificities were characterized by cluster analysis and absorption studies. The specificities were designated N1-N15 (N for Norwegian). Lymphocytes from 247 Norwegian dairy goats were tested. Each animal displayed from none to four of the characterized specificities. Lysostrip testing and family studies indicated that the specificities N1-N14 were coded for by multiple alleles belonging to at least two closely linked loci. It is suggested that these loci are part of the caprine major histocompatibility complex. Family studies gave strong evidence that the specificity N15 was not coded for by genes located in the same region as the other 14 specificities. Absorption studies showed that this specificity was located on both lymphocytes and erythrocytes. 相似文献