首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tuberculosis is still affecting millions of people worldwide, and new resistant strains of Mycobacterium tuberculosis are being found. It is therefore necessary to find new compounds for treatment. In this paper, we report the synthesis and in vitro testing of peptidyl β‐aminoboronic acids and β‐aminoboronates with anti‐tubercular activity. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

2.
A new chemoenzymatic route is reported to synthesize acebutolol, a selective β1 adrenergic receptor blocking agent in enantiopure (R and S) forms. The enzymatic kinetic resolution strategy was used to synthesize enantiopure intermediates (R)‐ and (S)‐N‐(3‐acetyl‐4‐(3‐chloro‐2‐hydroxypropoxy)phenyl)butyramide from the corresponding racemic alcohols. The results showed that out of eleven commercially available lipase preparations, two enzyme preparations (Lipase A, Candida antarctica, CLEA [CAL CLEA] and Candida rugosa lipase, 62316 [CRL 62316]) act in enantioselective manner. Under optimized conditions the enantiomeric excess of both (R)‐ and (S)‐N‐(3‐acetyl‐4‐(3‐chloro‐2‐hydroxypropoxy)phenyl)butyramide were 99.9 and 96.8%, respectively. N‐alkylation of both the (R) and (S) intermediates with isopropylamine gave enantiomerically pure (R and S)‐ acebutolol with a yield 68 and 72%, respectively. This study suggests a high yielding, easy and environmentally green approach to synthesize enantiopure acebutolol. Chirality 27:382–391, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

3.
Dehydroamino acids are non‐coded amino acids that offer unique conformational properties. Dehydrophenylalanine (ΔPhe) is most commonly used to modify bioactive peptides to constrain the topography of the phenyl ring in the side chain, which commonly serves as a pharmacophore. The Ramachandran maps (in the gas phase and in CHCl3 mimicking environments) of ΔPhe analogues with methyl groups at the β position of the side chain as well as at the C‐terminal amide were calculated using the B3LYP/6‐31 + G** method. Unexpectedly, β‐methylation alone results in an increase of conformational freedom of the affected ΔPhe residue. However, further modification by introducing an additional methyl group at C‐terminal methyl amide results in a steric crowding that fixes the torsion angle ψ of all conformers to the value 123°, regardless of the Z or E position of the phenyl ring. The number of conformers is reduced and the accessible conformational space of the residues is very limited. In particular, (Z)‐Δ(βMe)Phe with the tertiary C‐terminal amide can be classified as the amino acid derivative that has a single conformational state as it seems to adopt only the β conformation. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

4.
This review gives a broad overview of the state of play with respect to the synthesis, conformational properties, and biological activity of α‐fluorinated β‐amino acids and derivatives. General methods are described for the preparation of monosubstituted α‐fluoro‐β‐amino acids (Scheme 1). Nucleophilic methods for the introduction of fluorine predominantly involve the reaction of DAST with alcohols derived from α‐amino acids, whereas electrophilic sources of fluorine such as NFSI have been used in conjunction with Arndt? Eistert homologation, conjugate addition or organocatalyzed Mannich reactions. α,α‐Difluoro‐β‐amino acids have also been prepared using DAST; however, this area of synthesis is largely dominated by the use of difluorinated Reformatsky reagents to introduce the difluoro ester functionality (Scheme 9). α‐Fluoro‐β‐amino acids and derivatives analyzed by X‐ray crystal and NMR solution techniques are found to adopt preferred conformations which are thought to result from stereoelectronic effects associated with F located close to amines, amides, and esters (Figs. 26). α‐Fluoro amide and β‐fluoro ethylamide/amine effects can influence the secondary structure of α‐fluoro‐β‐amino acid‐containing derivatives including peptides and peptidomimetics (Figs. 79). α‐Fluoro‐β‐amino acids are also components of a diverse range of bioactive anticancer (e.g., 5‐fluorouracil), antifungal, and antiinsomnia agents as well as protease inhibitors where such fluorinated analogs have shown increased potency and spectrum of activity.  相似文献   

5.
In search for new drugs lowering arterial blood pressure, which could be applied in anti‐hypertensive therapy, research concerning agents blocking of renin‐angiotensin‐aldosteron system has been conducted. Despite many years of research conducted at many research centers around the world, aliskiren is the only one renin inhibitor, which is used up to now. Four novel potential renin inhibitors, having structure based on the peptide fragment 8–13 of human angiotensinogen, a natural substrate for renin, were designed and synthesized. All these inhibitors contain unnatural moieties that are derivatives of N‐methylleucyl‐β‐hydroxy‐γ‐amino acids at the P2‐P1' position: 4‐[N‐(N‐methylleucyl)‐amino]‐3‐hydroxy‐7‐(3‐nitroguanidino)‐heptanoic acid (AHGHA), 4‐[N‐(N‐methylleucyl)‐amino]‐3‐hydroxy‐5‐phenyl‐pentanoic acid (AHPPA) or 4‐[N‐(N‐methylleucyl)‐amino]‐8‐benzyloxycarbonylamino‐3‐hydroxyoctanoic acid (AAHOA). The previously listed synthetic β‐hydroxy‐γ‐amino acids constitute pseudodipeptidic units that correspond to the P1‐P1' position of the inhibitor molecule. An unnatural amino acid, 4‐methoxyphenylalanin (Phe(4‐OMe)), was introduced at the P3 position of the obtained compounds. Three of these compounds contain isoamylamide of 6‐aminohexanoic acid (ε‐Ahx‐Iaa) at the P2'‐P3' position. The proposed modifications of the selected human angiotensinogen fragment are intended to increase bioactivity, bioavailability, and stability of the inhibitor molecule in body fluids and tissues. The inhibitor Boc‐Phe(4‐OMe)‐MeLeu‐AHGHA‐OEt was obtained in the form of an ethyl ester. The hydrophobicity coefficient, expressed as log P varied between 3.95 and 8.17. In vitro renin inhibitory activity of all obtained compounds was contained within the range 10?6‐10?9 M. The compound Boc‐Phe(4‐OMe)‐MeLeu‐AHPPA‐Ahx‐Iaa proved to be the most active (IC50 = 1.05 × 10?9 M). The compounds Boc‐Phe(4‐OMe)‐MeLeu‐AHGHA‐Ahx‐Iaa and Boc‐Phe(4‐OMe)‐MeLeu‐AHPPA‐Ahx‐Iaa are resistant to chymotrypsin. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

6.
Chiral sulfoxides/N‐oxides (R)‐ 1 and (R,R)‐ 2 are effective chiral promoters in the enantioselective allylation of α‐keto ester N‐benzoylhydrazone derivatives 3a , 3b , 3c , 3d , 3e , 3f , 3g to generate the corresponding N‐benzoylhydrazine derivatives 4a , 4b , 4c , 4d , 4e , 4f , 4g , with enantiomeric excesses as high as 98%. Representative hydrazine derivatives 4a , 4b were subsequently treated with SmI2, and the resulting amino esters 5a , 5b with LiOH to obtain quaternary α‐substituted α‐allyl α‐amino acids 6a , 6b , whose absolute configuration was assigned as (S), with fundament on chemical correlation and electronic circular dichroism (ECD) data. Chirality 25:529–540, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
β‐Aminopeptidases comprise a class of enzymes with functional and structural similarities. All members of the β‐aminopeptidases described to date were isolated from bacterial sources. Uniquely, they catalyze the hydrolysis of β3‐ and/or β2‐amino acid residues from amides and peptides that are otherwise considered proteolytically stable. Due to this unusual reactivity with β‐peptide substrates, β‐aminopeptidases have potential to be used as biocatalysts for β‐peptide synthesis and for the resolution of enantiomerically pure β‐amino acids from racemic substrate mixtures. β‐Aminopeptidases are formed from an inactive precursor by posttranslational autoproteolytic cleavage, exposing the catalytic nucleophile at the N‐terminus of the newly formed β‐polypeptide chain. Such an activation step is a characteristic trait of enzymes of the N‐terminal nucleophile (Ntn) hydrolase superfamily. However, classical Ntn hydrolases and β‐aminopeptidases differ by the fold of their catalytic cores and are hence likely to originate from distinct evolutionary ancestors. In this contribution, we review the existing literature on β‐aminopeptidases, including biochemical and functional studies, as well as structural investigations that recently allowed insights into the catalytic mechanisms of precursor processing and β‐peptide conversion.  相似文献   

8.
α,β‐Dehydroamino acid esters occur in nature. To investigate their conformational properties, a systematic theoretical analysis was performed on the model molecules Ac‐ΔXaa‐OMe [ΔXaa = ΔAla, (E)‐ΔAbu, (Z)‐ΔAbu, ΔVal] at the B3LYP/6‐311+ + G(d,p) level in the gas phase as well as in chloroform and water solutions with the self‐consistent reaction field‐polarisable continuum model method. The Fourier transform IR spectra in CCl4 and CHCl3 have been analysed as well as the analogous solid state conformations drawn from The Cambridge Structural Database. The ΔAla residue has a considerable tendency to adopt planar conformations C5 (?, ψ ≈ ? 180°, 180°) and β2 (?, ψ ≈ ? 180°, 0°), regardless of the environment. The ΔVal residue prefers the conformation β2 (?, ψ ≈ ? 120°, 0°) in a low polar environment, but the conformations α (?, ψ ≈ ? 55°, 35°) and β (?, ψ ≈ ? 55°, 145°) when the polarity increases. The ΔAbu residues reveal intermediate properties, but their conformational dispositions depend on configuration of the side chain of residue: (E)‐ΔAbu is similar to ΔAla, whereas (Z)‐ΔAbu to ΔVal. Results indicate that the low‐energy conformation β2 is the characteristic feature of dehydroamino acid esters. The studied molecules constitute conformational patterns for dehydroamino acid esters with various side chain substituents in either or both Z and E positions. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

9.
10.
Herein we present design, synthesis, chiral HPLC resolution, and kinetics of racemization of axially chiral Ni(II) complexes of glycine and di‐(benzyl)glycine Schiff bases. We found that while the ortho‐fluoro derivatives are configurationally unstable, the pure enantiomers of corresponding axially chiral ortho‐chloro‐containing complexes can be isolated by preparative HPLC and show exceptional configurational stability (t1/2 from 4 to 216 centuries) at ambient conditions. Synthetic implications of this discovery for the development of new generation of axially chiral auxiliaries, useful for general asymmetric synthesis of α‐amino acids, are discussed.  相似文献   

11.
3‐Hydroxy‐3‐methylglutaryl‐coenzyme A synthase (HMGS) in the mevalonate (MVA) pathway generates isoprenoids including phytosterols. Dietary phytosterols are important because they can lower blood cholesterol levels. Previously, the overexpression of Brassica juncea wild‐type (wt) and mutant (S359A) BjHMGS1 in Arabidopsis up‐regulated several genes in sterol biosynthesis and increased sterol content. Recombinant S359A had earlier displayed a 10‐fold higher in vitro enzyme activity. Furthermore, tobacco HMGS overexpressors (OEs) exhibited improved sterol content, plant growth and seed yield. Increased growth and seed yield in tobacco OE‐S359A over OE‐wtBjHMGS1 coincided with elevations in NtSQS expression and sterol content. Herein, the overexpression of wt and mutant (S359A) BjHMGS1 in a crop plant, tomato (Solanum lycopersicum), caused an accumulation of MVA‐derived squalene and phytosterols, as well as methylerythritol phosphate (MEP)‐derived α‐tocopherol (vitamin E) and carotenoids, which are important to human health as antioxidants. In tomato HMGS‐OE seedlings, genes associated with the biosyntheses of C10, C15 and C20 universal precursors of isoprenoids, phytosterols, brassinosteroids, dolichols, methylerythritol phosphate, carotenoid and vitamin E were up‐regulated. In OE‐S359A tomato fruits, increased squalene and phytosterol contents over OE‐wtBjHMGS1 were attributed to heightened SlHMGR2, SlFPS1, SlSQS and SlCYP710A11 expression. In both tomato OE‐wtBjHMGS1 and OE‐S359A fruits, the up‐regulation of SlGPS and SlGGPPS1 in the MEP pathway that led to α‐tocopherol and carotenoid accumulation indicated cross‐talk between the MVA and MEP pathways. Taken together, the manipulation of BjHMGS1 represents a promising strategy to simultaneously elevate health‐promoting squalene, phytosterols, α‐tocopherol and carotenoids in tomato, an edible fruit.  相似文献   

12.
The conformation of oligomers of β‐amino acids of the general type Ac‐[β‐Xaa]n‐NHMe (β‐Xaa = β‐Ala, β‐Aib, and β‐Abu; n = 1–4) was systematically examined at different levels of ab initio molecular orbital theory (HF/6‐31G*, HF/3‐21G). The solvent influence was considered employing two quantum‐mechanical self‐consistent reaction field models. The results show a wide variety of possibilities for the formation of characteristic elements of secondary structure in β‐peptides. Most of them can be derived from the monomer units of blocked β‐peptides with n = 1. The stability and geometries of the β‐peptide structures are considerably influenced by the side‐chain positions, by the configurations at the Cα‐ and Cβ‐atoms of the β‐amino acid constituents, and especially by environmental effects. Structure peculiarities of β‐peptides, in particular those of various helix alternatives, are discussed in relation to typical elements of secondary structure in α‐peptides. © 1999 John Wiley & Sons, Inc. Biopoly 50: 167–184, 1999  相似文献   

13.
Herein, we contribute to the development of environmentally friendly antifoulants by synthesizing eighteen isocyanides derived from α,α‐disubstituted amino acids and evaluating their antifouling activity/toxicity against the cypris larvae of the Balanus amphitrite barnacle. Almost all isocyanides showed good antifouling activity without significant toxicity and exhibited EC50 values of 0.07 – 7.30 μg/mL after 120‐h exposure. The lowest EC50 values were observed for valine‐, methionine‐, and phenylalanine‐derived isocyanides, which achieved > 95% cypris larvae settlement inhibition at concentrations of less than 30 μg/mL without exhibiting significant toxicity. Thus, the prepared isocyanides should be useful for further research focused on the development of environmentally friendly antifouling agents.  相似文献   

14.
The acetylcholinesterase inhibition by enantiomers of exo‐ and endo‐2‐norbornyl‐Nn‐butylcarbamates shows high stereoselelectivity. For the acetylcholinesterase inhibitions by (R)‐(+)‐ and (S)‐(?)‐exo‐2‐norbornyl‐Nn‐butylcarbamates, the R‐enantiomer is more potent than the S‐enantiomer. But, for the acetylcholinesterase inhibitions by (R)‐(+)‐ and (S)‐(?)‐endo‐2‐norbornyl‐Nn‐butylcarbamates, the S‐enantiomer is more potent than the R‐enantiomer. Optically pure (R)‐(+)‐exo‐, (S)‐(?)‐exo‐, (R)‐(+)‐endo‐, and (S)‐(?)‐endo‐2‐norbornyl‐Nn‐butylcarbamates are synthesized from condensations of optically pure (R)‐(+)‐exo‐, (S)‐(?)‐exo‐, (R)‐(+)‐endo‐, and (S)‐(?)‐endo‐2‐norborneols with n‐butyl isocyanate, respectively. Optically pure norborneols are obtained from kinetic resolutions of their racemic esters by lipase catalysis in organic solvent. Chirality 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
5α‐Androst‐16‐en‐3α‐ol (α‐androstenol) is an important contributor to human axilla sweat odor. It is assumed that α‐andostenol is excreted from the apocrine glands via a H2O‐soluble conjugate, and this precursor was formally characterized in this study for the first time in human sweat. The possible H2O‐soluble precursors, sulfate and glucuronide derivatives, were synthesized as analytical standards, i.e., α‐androstenol, β‐androstenol sulfates, 5α‐androsta‐5,16‐dien‐3β‐ol (β‐androstadienol) sulfate, α‐androstenol β‐glucuronide, α‐androstenol α‐glucuronide, β‐androstadienol β‐glucuronide, and α‐androstenol β‐glucuronide furanose. The occurrence of α‐androstenol β‐glucuronide was established by ultra performance liquid chromatography (UPLC)/MS (heated electrospray ionization (HESI)) in negative‐ion mode in pooled human sweat, containing eccrine and apocrine secretions and collected from 25 female and 24 male underarms. Its concentration was of 79 ng/ml in female secretions and 241 ng/ml in male secretions. The release of α‐androstenol was observed after incubation of the sterile human sweat or α‐androstenol β‐glucuronide with a commercial glucuronidase enzyme, the urine‐isolated bacteria Streptococcus agalactiae, and the skin bacteria Staphylococcus warneri DSM 20316, Staphylococcus haemolyticus DSM 20263, and Propionibacterium acnes ATCC 6919, reported to have β‐glucuronidase activities. We demonstrated that if α‐ and β‐androstenols and androstadienol sulfates were present in human sweat, their concentrations would be too low to be considered as potential precursors of malodors; therefore, the H2O‐soluble precursor of α‐androstenol in apocrine secretion should be a β‐glucuronide.  相似文献   

16.
Azotobacter vinelandii is proposed to contain a single β-ketothiolase activity participating in the formation of acetoacetyl-CoA, a precursor for poly-β-hydroxybutyrate (PHB) synthesis, and in β-oxidation (Manchak, J., Page, W.J., 1994. Control of polyhydroxyalkanoate synthesis in Azotobacter vinelandii strain UWD. Microbiology 140, 953–963). We designed a degenerate oligonucleotide from a highly conserved region among bacterial β-ketothiolases and used it to identify bktA, a gene with a deduced protein product with a high similarity to β-ketothiolases. Immediately downstream of bktA, we identified a gene called hbdH, which encodes a protein exhibiting similarity to β-hydroxyacyl-CoA and β-hydroxybutyryl-CoA dehydrogenases. Two regions with homology to bktA were also observed. One of these was cloned and allowed the identification of the phbA gene, encoding a second β-ketothiolase. Strains EV132, EV133, and GM1 carrying bktA, hbdH and phbA mutations, respectively, as well as strain EG1 carrying both bktA and phbA mutations, were constructed. The hbdH mutation had no effect on β-hydroxybutyryl-CoA dehydrogenase activity or on fatty acid assimilation. The bktA mutation had no effect on β-ketothiolase activity, PHB synthesis or fatty acid assimilation, whereas the phbA mutation significantly reduced β-ketothiolase activity and PHB accumulation, showing that this is the β-ketothiolase involved in PHB biosynthesis. Strain EG1 was found to grow under β-oxidation conditions and to possess β-ketothiolase activity. Taken together, these results demonstrate the presence of three genes coding for β-ketothiolases in A. vinelandii.  相似文献   

17.
18.
19.
Inflammatory cytokines are closely related to pigmentary changes. In this study, the effects of IFN‐γ on melanogenesis were investigated. IFN‐γ inhibits basal and α‐MSH‐induced melanogenesis in B16 melanoma cells and normal human melanocytes. MITF mRNA and protein expressions were significantly inhibited in response to IFN‐γ. IFN‐γ inhibited CREB binding to the MITF promoter but did not affect CREB phosphorylation. Instead, IFN‐γ inhibited the association of CBP and CREB through the increased association between CREB binding protein (CBP) and STAT1. These findings suggest that IFN‐γ inhibits both basal and α‐MSH‐induced melanogenesis by inhibiting MITF expression. The inhibitory action of IFN‐γ in α‐MSH‐induced melanogenesis is likely to be associated with the sequestration of CBP via the association between CBP and STAT1. These data suggest that IFN‐γ plays a role in controlling inflammation‐ or UV‐induced pigmentary changes.  相似文献   

20.
The γ phase Li3VO4 which possesses higher ionic conductivity is more preferable for lithium ion batteries, but it is only stable at high temperature and would convert to low temperature β phase spontaneously when cooling down. Here, the phase control of Li3VO4 to stabilize its γ phase in room temperature is successfully mediated by introducing proper Si‐doping, and for the first time the electrochemical performances of γ‐Li3VO4 is investigated. It is found that pure γ‐Li3VO4 can be obtained in a doping ratio of x = 0.05–0.15 in Li3+xV1?xSixO4 with addition of excess Li source in synthesis design. The doping mechanism and the energy changes are investigated in detail by using the first principle calculations, it reveals that an interstitial Li+ is formed with doping of Si4+ in Li3VO4 to balance the system charge. When served as an anode, the Si‐doped γ‐Li3VO4 shows much smoothed Li+ insertion/extraction and enhanced cycle stability with only a single pair of redox peaks, which behaves much different with the complex multicouples of redox peaks in typical β‐Li3VO4. These changes in electrochemical performances implies that γ‐Li3VO4 can effectively accommodate Li+ in an easier and more facile way and relieved structure stress during the charge/discharge process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号