首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Efforts to develop animal models for human immunodeficiency virus type-1 (HIV-1) vaccine testing have focused on lentivirus infection of nonhuman primates. A long-term goal of this primate research is to utilize the models to understand the mechanisms of pathogenesis leading to AIDS. Because the time to disease is compressed relative to HIV infection in humans, therapeutic strategies and compounds can be tested in nonhuman primate models in a shorter time frame and under more controlled conditions than are possible in many clinical studies. Recent interventive studies in primates using antiviral drugs or passive immune globulin (IgG) have demonstrated that multiple log reductions in plasma virus can be achieved and sustained, with accompanying health benefits. Information gained about timing and dosage may be of utility in designing clinical studies. The development of reliable and predictable animal models for effective therapies and vaccines against AIDS remains a critical priority for primate research.  相似文献   

2.
Use of primates in research: a global overview   总被引:6,自引:0,他引:6  
We assessed the use of nonhuman primates and nonhuman primate biological material in research by reviewing studies published in 2001 in peer-reviewed journals. The number and species of primates used, the origin of the animals, the type of study, the area of research of the investigation, and the location at which the research was performed were tabulated. Additionally, factors related to the animals that may have affected the outcome of the experiments were recorded. A total of 2,937 articles involving 4,411 studies that employed nonhuman primates or nonhuman primate biological material were identified and analyzed. More than 41,000 animals were represented in the studies published in 2001. In the 14% of studies for which re-use could be determined, 69% involved animals that had been used in previous experiments. Published studies most commonly used nonhuman primates or nonhuman primate biological material from the species Chlorocebus aethiops (19%), Macaca mulatta (18%), M. fascicularis (9%), and Papio spp. (6%). Of these studies, 54% were classified as in vitro studies, 14% as noninvasive, 30% as chronic, and 1% were considered acute. Nonhuman primates were primarily used in research areas in which they appear to be the most appropriate models for humans. The most common areas of research were microbiology (including HIV/AIDS (26%)), neuroscience (19%), and biochemistry/chemistry (12%). Most (84%) of the primate research published in 2001 was conducted in North America, Europe, and Japan. The animals and conditions under which they were housed and used were rarely described. Although it is estimated that nonhuman primates account for an extremely small fraction of all animals used in research, their special status makes it important to report the many husbandry and environmental factors that influence the research results generated. This analysis has identified that editors rarely require authors to provide comprehensive information concerning the subjects (e.g., their origin), treatment conditions, and experimental procedures utilized in the studies they publish. The present analysis addresses the use of primates for research, including the effects of a shortage of suitable nonhuman primate subjects in many research areas.  相似文献   

3.
Opportunistic infections in immunologically compromised nonhuman primates   总被引:1,自引:0,他引:1  
Despite advances in the husbandry of nonhuman primates, natural and experimentally induced diseases continue to pose risks to animal health. These risks are particularly important when such disease results in immunodeficient states that provide an opportunity for the development of opportunistic infections. Because opportunistic agents may serve as significant confounders to research and hold potential for zoonotic transmission, knowledge of disease pathogenesis, surveillance, and risk reduction is particularly important to individuals who work closely with primates. Endogenous diseases of primates that result in blunted immune responses and thus allow for the development of opportunistic infection include simian type D retroviruses and measles. In addition, simian immunodeficiency virus is a frequently studied experimental cause of immunosuppression. This article focuses on clinical and pathological aspects of the most common opportunistic infections that occur in nonhuman primates maintained in research settings. The complete elimination of all infectious agents from primate colonies may be impossible and unwarranted, but microbial surveillance programs can help both to define the complement of agents present in a colony and to elucidate their potential impacts on colony health, zoonotic risk, and experimental research. We discuss risk reduction through the use of quarantine procedures, specific pathogen-free animals, and environmental controls.  相似文献   

4.
Simian foamy viruses (SFV) are ancient retroviruses of primates and have coevolved with their host species for as many as 30 million years. Although humans are not naturally infected with foamy virus, infection is occasionally acquired through interspecies transmission from nonhuman primates. We show that interspecies transmissions occur in a natural hunter-prey system, i.e., between wild chimpanzees and colobus monkeys, both of which harbor their own species-specific strains of SFV. Chimpanzees infected with chimpanzee SFV strains were shown to be coinfected with SFV from colobus monkeys, indicating that apes are susceptible to SFV superinfection, including highly divergent strains from other primate species.  相似文献   

5.
J. L. VandeBerg 《Genetica》1987,73(1-2):7-14
Genetics became firmly established as a scientific discipline early in the twentieth century, but major genetic research programs that involve nonhuman primates have been initiated only in the last two decades. Considerable activity in this area has been stimulated by the concurrent development of powerful techniques for detecting variability in chromosomes, proteins, and DNA; the establishment of pedigreed breeding colonies; and the recognition that nonhuman primates are ideally suited as models of human disease and social structure. The subdisciplines of cytogenetics, immunogenetics, and biochemical genetics have established a firm basis for biomedical and evolutionary research with nonhuman primates, and they will contribute greatly to future research initiatives. More recently, the advent of molecular genetics has enhanced the opportunities for research; and the exploration of nonhuman primates as potential models for genetically mediated diseases has been richly rewarded.We stand at the threshold of a new and exciting era in genetic research with nonhuman primates. The results of research programs already underway not only will provide more definitive answers about the origin of man, but also will play a critical role in solving the health-related problems of the present and of the future.  相似文献   

6.
Extensive use of nonhuman primates for biomedical research has contributed to periodic acute shortages of these animals. As a result, various resources have been developed to assist investigators in maintaining healthy colonies and conserving stocks. A wide range of expertise is available at the national and international levels to investigators working with nonhuman primates.  相似文献   

7.
Tripartite motif (TRIM) proteins are composed of RING, B-box 2, and coiled coil domains. Some TRIM proteins, such as TRIM5alpha, also possess a carboxy-terminal B30.2(SPRY) domain and localize to cytoplasmic bodies. TRIM5alpha has recently been shown to mediate innate intracellular resistance to retroviruses, an activity dependent on the integrity of the B30.2 domain, in particular primate species. An examination of the sequences of several TRIM proteins related to TRIM5 revealed the existence of four variable regions (v1, v2, v3, and v4) in the B30.2 domain. Species-specific variation in TRIM5alpha was analyzed by amplifying, cloning, and sequencing nonhuman primate TRIM5 orthologs. Lineage-specific expansion and sequential duplication occurred in the TRIM5alpha B30.2 v1 region in Old World primates and in v3 in New World monkeys. We observed substitution patterns indicative of selection bordering these particular B30.2 domain variable elements. These results suggest that occasional, complex changes were incorporated into the TRIM5alpha B30.2 domain at discrete time points during the evolution of primates. Some of these time points correspond to periods during which primates were exposed to retroviral infections, based on the appearance of particular endogenous retroviruses in primate genomes. The results are consistent with a role for TRIM5alpha in innate immunity against retroviruses.  相似文献   

8.
Specific pathogen-free (SPF) macaque colonies are now requested frequently as a resource for research. Such colonies were originally conceived as a means to cull diseased animals from research-dedicated colonies, with the goal of eliminating debilitating or fatal infectious agents from the colony to improve the reproductive capacity of captive research animals. The initial pathogen of concern was Mycobacterium tuberculosis (M.tb.), recognized for many years as a pathogen of nonhuman primates as well as a human health target. More recently attention has focused on four viral pathogens as the basis for an SPF colony: simian type D retrovirus (SRV), simian immunodeficiency virus (SIV), simian T cell lymphotropic/leukemia virus (STLV), and Cercopithecine herpesvirus 1 (CHV-1). New technologies, breeding, and maintenance schemes have emerged to develop and provide SPF primates for research. In this review we focus on the nonhuman primates (NHPs) most common to North American NHP research facilities, Asian macaques, and the most common current research application of these animals, modeling of human AIDS.  相似文献   

9.
Six different species of nonhuman primates housed at the CIRMF Primate Center, cynomolgus monkeys (Macaca fascicularis), rhesus monkeys (Macaca mulatta), mandrills (Mandrillus sphinx), vervets (Cercopithecus aethiops pygerythrus), chimpanzees (Pan troglodyte) and baboons (Papio hamadryas), were evaluated for their natural killer cell activity and for the ability of their peripheral blood mononuclear cells to proliferate in response to known mitogens (concanavalin A, phytohemagglutinin and staphylococcal enterotoxin A) and to react with a panel of mouse monoclonal antibodies directed against human leukocyte surface antigens. Basic information on normal immune functions in these primates is important because of their use as experimental animal models for the study of human diseases such as acquired immunodeficiency syndrome (AIDS), hepatitis, loiasis and malaria.  相似文献   

10.
缺乏合适的动物模犁是制约艾滋病研究取得重大突破的关键瓶颈之一.细胞内的抗病毒蛋白被称为限制因子.研究不同灵长类动物抗HIV-1宿主限制因子的存在形式及作用机制对建立合适AIDS灵长类动物模型有十分重要的意义.TRIM5α是哺乳动物细胞中一种重要和关键的限制因子,它以物种依赖的方式限制包括HIV-1在内的逆转录病毒的感染.TRIM5-CypA融合基因是存在于新大陆猴与旧大陆猴中的一种独特的TRIM5基因形式.为了研究不同灵长类动物TRIM5基因的存在方式,该文对熊猴、藏婀猴、红面猴及中闰恒河猴4个物种共110只灵长类动物进行了TRIM5-CypA融合模式的研究.首次发现熊猴也存在TRIM5-CypA基因融合现象.熊猴TRIMCyp融合基因形成模式类似于北平顺猴TRIMCyp融合基因模式,即CypA假基因的cDNA序列通过逆转座方式插入到TRIM5基凶的3'-UTR区域.基因序列分析表明,该基因与北平顶猴相应基因序列高度相似;并且其TRIM5内含子6的3'-剪接位点也相应存存G-to-T突变现象(G/T).这提示熊猴也极有可能像北平顶猴一样表达TRIM5-CypA融合蛋白,从而导致熊猴可能跟北平顶猴一样可能被HIV-1感染.因此,熊猴极有希望成为一种新的HIV/AIDS灵长类动物模型.  相似文献   

11.
Because of the close phylogenetic relationship, nonhuman primates are highly susceptible to human pathogens, including infection of chimpanzees by the human immunodeficiency virus (HIV), the causative agent of AIDS. This, and the existence of a highly related simian virus, SIV, which causes an AIDS-like disease in macaques, emphasizes the continued importance of using nonhuman primates as model systems for identifying and developing prophylaxis and therapy for infectious agents and, in particular, for fighting the pandemic AIDS.  相似文献   

12.
Modeling human diseases using nonhuman primates including chimpanzee, rhesus, cynomolgus, marmoset and squirrel monkeys has been reported in the past decades. Due to the high similarity between nonhuman primates and humans, including genome constitution, cognitive behavioral functions, anatomical structure, metabolic, reproductive, and brain functions; nonhuman primates have played an important role in understanding physiological functions of the human body, clarifying the underlying mechanism of human diseases, and the development of novel treatments for human diseases. However, nonhuman primate research has been restricted to cognitive, behavioral, biochemical and pharmacological approaches of human diseases due to the limitation of gene transfer technology in nonhuman primates. The recent advancement in transgenic technology that has led to the generation of the first transgenic monkey in 2001 and a transgenic monkey model of Huntington’s disease (HD) in 2008 has changed that focus. The creation of transgenic HD monkeys that replicate key pathological features of human HD patients further suggests the crucial role of nonhuman primates in the future development of biomedicine. These successes have opened the door to genetic manipulation in nonhuman primates and a new era in modeling human inherited genetic disorders. We focused on the procedures in creating transgenic Huntington’s disease monkeys, but our work can be applied to transgenesis in other nonhuman primate species.  相似文献   

13.
William H. Stone 《Genetica》1987,73(1-2):169-177
The wide array of papers delivered at this symposium, ranging from population genetics to molecular genetics, is convincing evidence that genetic research with nonhuman primates is in full bloom. In fact, progress has been quite remarkable considering that a significant number of pedigreed colonies of nonhuman primates have been available for less than 25 years, which is hardly enough time to raise 3 generations of chimpanzees, 5 generations of baboons or 6 generations of rhesus monkeys. Were it not for these pedigreed colonies, we would not have been privileged to have this assemblage of papers on behavior, social structure, predisposition to disease and management of breeding colonies. It is indeed exciting that preliminary evidence has been obtained for major genes that play a role in susceptibility to dyslipoproteinemias in baboons, and that monoclonal antibodies and DNA markers are helping us to understand cholesterol metabolism. And thanks to computers, we can now rank animals in a colony in terms of their useful genotypes as well as their productivity. One can not help but be impressed with the commonality of humans and nonhuman primates at the structural and functional levels. For example, the major histocompatibility systems and the maternal-fetal relationships are very similar. We heard that this similarity is even more striking at the chromosomal, biochemical and DNA levels. A provocative question yet to be answered is, “what accounts for the obvious differences between humans and nonhuman primates in view of these incredible similarities?” In light of these advances, this symposium was at the cutting edge of primate genetics and the papers published in this issue of Genetica are certain to be hallmarks in the literature.  相似文献   

14.
The recognition that AIDS originated as a zoonosis heightens public health concerns associated with human infection by simian retroviruses endemic in nonhuman primates (NHPs). These retroviruses include simian immunodeficiency virus (SIV), simian T-cell lymphotropic virus (STLV), simian type D retrovirus (SRV), and simian foamy virus (SFV). Although occasional infection with SIV, SRV, or SFV in persons occupationally exposed to NHPs has been reported, the characteristics and significance of these zoonotic infections are not fully defined. Surveillance for simian retroviruses at three research centers and two zoos identified no SIV, SRV, or STLV infection in 187 participants. However, 10 of 187 persons (5.3%) tested positive for SFV antibodies by Western blot (WB) analysis. Eight of the 10 were males, and 3 of the 10 worked at zoos. SFV integrase gene (int) and gag sequences were PCR amplified from the peripheral blood lymphocytes available from 9 of the 10 persons. Phylogenetic analysis showed SFV infection originating from chimpanzees (n = 8) and baboons (n = 1). SFV seropositivity for periods of 8 to 26 years (median, 22 years) was documented for six workers for whom archived serum samples were available, demonstrating long-standing SFV infection. All 10 persons reported general good health, and secondary transmission of SFV was not observed in three wives available for WB and PCR testing. Additional phylogenetic analysis of int and gag sequences provided the first direct evidence identifying the source chimpanzees of the SFV infection in two workers. This study documents more frequent infection with SFV than with other simian retroviruses in persons working with NHPs and provides important information on the natural history and species origin of these infections. Our data highlight the importance of studies to better define the public health implications of zoonotic SFV infections.  相似文献   

15.
R. M. Sharp 《Genetica》1987,73(1-2):81-84
Monoclonal antibodies, because of their specificity and unlimited availability, have become one of the most powerful experimental tools available to the biological sciences. It is possible to make monoclonal antibodies that bind to determinants that are monomorphic in one or more species or to determinants that are polymorphic within a species. Few monoclonal antibodies have been made using immunogens derived from nonhuman primates. However, some monoclonal antibodies that recognize monotypic markers in humans can be used to detect polymorphic markers in nonhuman primates. Thus, the rapid development of monoclonal antibodies specific for human proteins significantly increases the potential number of immunogenetic markers useful for studying phylogenetic relationships and for identifying genetic polymorphisms among nonhuman primates.  相似文献   

16.
Acute shortages of Indian origin Rhesus macaques significantly hinder HIV/AIDS research. Cellular immune responses are particularly difficult to study because only a subset of animals possess MHC class I (MHC I) alleles with defined peptide-binding specificities. To expand the pool of nonhuman primates suitable for studies of cellular immunity, we defined 66 MHC I alleles in Cynomolgus macaques (Macaca fascicularis) of Chinese, Vietnamese, and Mauritian origin. Most MHC I alleles were found only in animals from a single geographic origin, suggesting that Cynomolgus macaques from different origins are not interchangeable in studies of cellular immunity. Animals from Mauritius may be particularly valuable because >50% of these Cynomolgus macaques share the MHC class I allele combination Mafa-B*430101, Mafa-B*440101, and Mafa-B*460101. The increased MHC I allele sharing of Mauritian origin Cynomolgus macaques may dramatically reduce the overall number of animals needed to study cellular immune responses in nonhuman primates while simultaneously reducing the confounding effects of genetic heterogeneity in HIV/AIDS research.  相似文献   

17.
18.
The safety recommendations for studies on acquired immunodeficiency syndrome (AIDS) using nonhuman primates are based on knowledge about the epidemiology of the disease in humans, characteristics of the virus, and standard methods for handling nonhuman primates in the laboratory. Appropriate procedures avoid exposure to potentially infectious materials by skin puncture or to mucous membranes by using appropriate disinfecting agents, physical containment, protective clothing, and animal handling techniques.  相似文献   

19.
Abstract: The genetic similarity between humans and nonhuman primates makes nonhuman primates uniquely suited as models for genetic research on complex physiological and behavioral phenotypes. By comparison with human subjects, nonhuman primates, like other animal models, have several advantages for these types of studies: 1) constant environmental conditions can be maintained over long periods of time, greatly increasing the power to detect genetic effects; 2) different environmental conditions can be imposed sequentially on individuals to characterize genotype-environment interactions; 3) complex pedigrees that are much more powerful for genetic analysis than typically available human pedigrees can be generated; 4) genetic hypotheses can be tested prospectively by selective matings; and 5) essential invasive and terminal experiments can be conducted. Limitations of genetic research with nonhuman primates include cost and availability. However, the ability to manipulate both genetic and environmental factors in captive primate populations indicates the promise of genetic research with these important animal models for illuminating complex disease processes. The utility of nonhuman primates for biomedical research on human health problems is illustrated by examples concerning the use of baboons in studies of osteoporosis, alcohol metabolism, and lipoproteins.  相似文献   

20.
The sudden appearance of diseases like SARS (severe acute respiratory syndrome 1 ), the devastating impacts of diseases like Ebola on both human and wildlife communities, 2 , 3 and the immense social and economic costs created by viruses like HIV 4 underscore our need to understand the ecology of infectious diseases. Given that monkeys and apes often share parasites with humans, understanding the ecology of infectious diseases in nonhuman primates is of paramount importance. This is well illustrated by the HIV viruses, the causative agents of human AIDS, which evolved recently from related viruses of chimpanzees (Pan troglodytes) and sooty mangabeys (Cercocebus atys 5 ), as well as by the outbreaks of Ebola virus, which trace their origins to zoonotic transmissions from local apes. 6 A consideration of how environmental change may promote contact between humans and nonhuman primates and thus increase the possibility of sharing infectious diseases detrimental to humans or nonhuman primates is now paramount in conservation and human health planning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号