首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
脂肪酸对昆虫生长、发育、繁殖、信息交流起到重要的作用。主要介绍脂肪酸合成通路中的5个关键基因,乙酰辅酶A羧化酶基因(ACC)、脂肪酸合成酶基因(FAS)、超长链脂肪酸延伸酶基因(ELO)、去饱和酶基因(desat)及脂酰辅酶A还原酶基因(FAR)在昆虫中的研究进展。  相似文献   

2.
目的 分析酰基辅酶A硫酯酶7(ACOT7)在小鼠早期妊娠过程中的表达和调控,探讨其与子宫接受态建立的相关性.方法 分别建立小鼠早期妊娠模型、假孕模型、卵巢摘除后类固醇激素处理模型和延迟着床与激活模型,结合实时定量PCR(qRT-PCR)、原位杂交、免疫荧光检测子宫ACOT7在这些模型中的表达模式.结果 ACOT7的mR...  相似文献   

3.
《生物磁学》2011,(16):I0001-I0002
酯酰辅酶A合成酶长链家族成员4(ACSL4)是脂代谢中一个重要的酶,它催化长链脂肪酸和辅酶A反应生成酯酰辅酶A。这个步骤使长链脂肪酸活化而进入脂类合成和能量代谢。因此,  相似文献   

4.
日本东北大学医学部病态代谢学助手松原洋一已在人体中克隆控制脂肪酸β氧化的第一阶段的酶——酰(基)辅酶 A 脱氢酶。人如缺损这种酶,就会出现类似雷耶(Reye)综合征的状,有时会成为小儿突然死亡的原因。也许能因已找到了基因而随之开发出早期诊断法。酰(基)辅酶 A 脱氢酶是在体内糖分减少,使脂肪酸用作能源时起作用的酶。它有三类:对碳数为1~6个(主要是4个)的脂肪酸起作用的短链型(SCAD)、对6~10个(主要是6和8个)起作用的小链型(MCAD)、对更多碳素(主要是16个)起作用的长  相似文献   

5.
硫酯酶在生物体内能催化水解脂酰酰基载体蛋白和饱和脂肪脂酰链,对中链脂肪酸(Medium chain fatty acids,MCFAs)的积累起着关键作用。为获得具有生产中链脂肪酸能力的工程菌,以拟南芥c DNA为模板,PCR扩增得到其脂酰-ACP硫酯酶基因At Fat A,经Eco RⅠ/XbaⅠ双酶切后连接至同样双酶切的质粒中,获得重组质粒p PICZαA-At Fat。将重组质粒电击转入毕赤酵母GS115中,通过Zeocin抗性筛选,挑选出阳性克隆子并摇瓶发酵诱导,SDS-聚丙烯酰胺凝胶电泳分析获得明显目的蛋白条带,首次成功构建At Fat A的真菌表达系统。气质联用法检测发酵产物胞外游离脂肪酸,发现毕赤酵母At Fat A重组菌株比起始GS115菌株胞外游离MCFAs(主要是辛酸)产量增加51%,MCFAs产量占胞外总脂肪酸产量的28.7%,而野生菌中这一比例仅有18.1%,这为日后生产安全无毒害的MCFAs探索了一条新的途径。  相似文献   

6.
纳他霉素(natamycin)是一种高效、广谱、安全的抗真菌剂,广泛应用于食品防腐与医药领域。纳他霉素可由多种链霉菌发酵产生。它是以乙酰辅酶A、丙二酰辅酶A及甲基丙二酰辅酶A为前体经Ⅰ型聚酮合酶(polyketide synthase,PKS)催化合成的多烯大环内酯类化合物。本研究以纳他霉素产生菌——褐黄孢链霉菌为研究材料,分别对不同前体分子供给途径中的关键酶进行过表达,并确定影响纳他霉素产量的关键前体供给途径。研究结果发现:通过过表达乙酰辅酶A合成酶(acetyl-CoA synthase,ACS)加强乙酰辅酶A合成途径,以及通过过表达甲基丙二酰辅酶A变位酶(methylmalonyl-CoA mutase,MCM)加强甲基丙二酰辅酶A合成途径,重组菌株纳他霉素产量分别比野生型菌株提高了44.19%和20.51%。共过表达ACS和MCM,重组菌株纳他霉素产量获得进一步提升(达1123.34mg/L),比野生型菌株提高了66.29%。上述发现为通过前体代谢工程的策略构建纳他霉素工业高产菌株提供了参考,也为其他聚酮类天然产物高产工程菌株的构建提供了借鉴。  相似文献   

7.
【背景】链霉菌属于放线菌科,在土壤环境中广泛分布。链霉菌具有复杂的形态分化和多样性的次生代谢网络,能产生大量具有生物活性的次级代谢产物,被广泛深入研究。【目的】天蓝色链霉菌是链霉菌的模式菌株,其脂肪酸合成代谢与次级代谢联系紧密,但目前脂肪酸合成代谢途径还不清楚,其长链3-酮脂酰ACP合成酶还未见报道。【方法】利用大肠杆菌FabF序列进行同源比对,发现天蓝色链霉菌A3(2)的基因组中,SCO2390(ScoFabF1)、SCO1266(ScoFabF2)、SCO0548(ScoFabF3)和SCO5886 (ScoRedR)具有较高的相似性,并具有保守的Cys-His-His催化活性中心,可能具有长链3-酮脂酰ACP合成酶活性。采用PCR扩增方法分别获得以上基因,连入表达载体pBAD24M后分别互补大肠杆菌fabB(ts)突变株和fabB(ts)fabF双突变株,并检测转化子的生长情况。以上基因与pET-28b连接后,在大肠杆菌BL21(DE3)中表达,并利用Ni-NTA纯化获得蛋白,体外测定其催化活性。将以上基因分别互补大肠杆菌fabF突变株后,GC-MS测定互补株的脂肪酸组成。【结果】4个同源基因中,只有ScofabF1能恢复fabB(ts)fabF双突变株42°C时在添加油酸条件下的生长,其他3个基因均不能恢复生长。而这4个基因都不能恢复fabB(ts)突变株42°C时生长。体外活性测定ScoFabF1具有长链3-酮脂酰ACP合成酶活性,其他3个蛋白都不具有该活性。仅ScofabF1能显著提高大肠杆菌fabF突变株的顺-11-十八碳烯酸(C18:1)比例,其他3个基因都不具有该功能。【结论】天蓝色链霉菌中ScofabF1编码长链3-酮脂酰ACP合成酶II,在脂肪酸利用过程中发挥重要作用。天蓝色链霉菌中没有发现编码长链3-酮脂酰ACP合成酶I的基因,其可能通过其他途径合成少量的不饱和脂肪酸。以上研究结果为进一步研究天蓝色链霉菌中脂肪酸合成机制奠定了基础。  相似文献   

8.
【背景】丙二酰单酰辅酶A:酰基载体蛋白转酰基酶(malonyl coenzyme A:acyl carrier protein transacylase, MCAT)是Ⅱ型脂肪酸合酶(fatty acid synthase Ⅱ, FASⅡ)的重要亚基,与脂肪酸合成直接相关,然而关于微藻MCAT的信息却很少。【目的】验证三角褐指藻MCAT的功能。【方法】在模式硅藻三角褐指藻的全基因组序列中发现了一个可能的mcat基因序列,对其进行生物信息学分析,构建原核表达载体,并转入MCAT缺陷型大肠杆菌L48菌株中,最后利用GC-MS分析突变株脂肪酸的成分和含量。【结果】三角褐指藻MCAT主要结构为α-螺旋和无规则卷曲,与圆柱脆杆藻的亲缘关系最为接近,为protits型MCAT;三角褐指藻MCAT的表达使MCAT缺陷型大肠杆菌L48菌株恢复了合成脂肪酸的功能;对L48回复突变株的脂肪酸组成进行分析,发现该酶对C14:0具有底物偏好性,从而促进中长链脂肪酸如C16:0和C17:1的合成,这一特点与protits型MCAT的特性基本相符。【结论】三角褐指藻MCAT能促进脂肪酸的合成,这为微藻脂肪酸合成及...  相似文献   

9.
磷酸泛酰巯基乙胺基转移酶(PPTase)催化脂肪酸合酶(FAS)、聚酮合酶(PKS)和非核糖体肽合成酶(NRPS)中载体蛋白从脱辅基形态转化为全辅基形态,对脂肪酸、PKS产物和NRPS产物的生物合成起着不可或缺的作用。本文介绍并总结了链霉菌PPTase对载体蛋白底物选择性的最新研究进展:Ⅲ型PPTase特异性催化同一个多肽链中ACP的辅基化;Ⅱ型PPTase倾向于催化Ⅰ型PKS中ACP和NRPS中PCP的辅基化;Ⅰ型PPTase倾向于催化Ⅱ型PKS中ACP和Ⅱ型FAS中ACP的辅基化;编码基因位于基因簇内的Ⅰ型/Ⅱ型PPTase倾向于催化编码基因位于同基因簇内的PKS/NRPS中ACP/PCP的辅基化;这些研究结果为阐明并改造链霉菌辅基化网络以提高特定次级代谢产物的产量提供了参考和借鉴。  相似文献   

10.
本文旨在构建阿维链霉菌(Streptomyces avermitilis)来源的磷脂酰丝氨酸合成酶基因(pss)的重组质粒,研究其在毕氏酵母中的异源分泌型表达。利用PCR技术克隆阿维链霉菌来源的pss基因,再通过电转化方法将重组质粒pOG-01转入毕氏酵母KM71中,构建重组工程菌KP1。实验结果表明,阿维链霉菌来源的磷酯酰丝氨酸合成酶基因在毕氏酵母KM71中成功表达,2 mL菌体上清催化50 mmol/L卵磷脂,转酯反应的转化率为58%,酶活为4.83 U/mL。  相似文献   

11.
《Journal of lipid research》2017,58(6):1174-1185
Acyl-CoA thioesterase 7 (ACOT7) is an intracellular enzyme that converts acyl-CoAs to FFAs. ACOT7 is induced by lipopolysaccharide (LPS); thus, we investigated downstream effects of LPS-induced induction of ACOT7 and its role in inflammatory settings in myeloid cells. Enzymatic thioesterase activity assays in WT and ACOT7-deficient macrophage lysates indicated that endogenous ACOT7 contributes a significant fraction of total acyl-CoA thioesterase activity toward C20:4-, C20:5-, and C22:6-CoA, but contributes little activity toward shorter acyl-CoA species. Lipidomic analyses revealed that LPS causes a dramatic increase, primarily in bis(monoacylglycero)phosphate species containing long (≥C20) polyunsaturated acyl-chains in macrophages, and that the limited effect observed by ACOT7 deficiency is restricted to glycerophospholipids containing 20-carbon unsaturated acyl-chains. Furthermore, ACOT7 deficiency did not detectably alter the ability of LPS to induce cytokines or prostaglandin E2 production in macrophages. Consistently, although ACOT7 was induced in macrophages from diabetic mice, hematopoietic ACOT7 deficiency did not alter the stimulatory effect of diabetes on systemic inflammation or atherosclerosis in LDL receptor-deficient mice. Thus, inflammatory stimuli induce ACOT7 and remodeling of phospholipids containing unsaturated long (≥C20)-acyl chains in macrophages, and, although ACOT7 has preferential thioesterase activity toward these lipid species, loss of ACOT7 has no major detrimental effect on macrophage inflammatory phenotypes.≥  相似文献   

12.
Summary The strictly anaerobic bacterium Clostridium tetanomorphum formed an extracellular lipase when the growth medium contained glycerol in addition to fermentable substrates such as l-glutamate or glucose. The lipase was purified from the concentrated culture supernatant and exhibited a final specific activity of 900 U/mg. The purified lipase had a Stokes’ radius of 5.0 nm and a sedimentation coefficient of 5.7S. The native molecular mass calculated from these values was 118,000 Da, which is considerably higher than the molecular mass calculated by PAGE (70,000 Da). With p-nitrophenyl esters of different fatty acids as substrates enzyme activity was highest when the acyl chain was short (C2). The purified lipase showed no protease or thioesterase activity.  相似文献   

13.
Acetyl-CoA plays a fundamental role in cell signaling and metabolic pathways, with its cellular levels tightly controlled through reciprocal regulation of enzymes that mediate its synthesis and catabolism. ACOT12, the primary acetyl-CoA thioesterase in the liver of human, mouse, and rat, is responsible for cleavage of the thioester bond within acetyl-CoA, producing acetate and coenzyme A for a range of cellular processes. The enzyme is regulated by ADP and ATP, which is believed to be mediated through the ligand-induced oligomerization of the thioesterase domains, whereby ATP induces active dimers and tetramers, whereas apo- and ADP-bound ACOT12 are monomeric and inactive. Here, using a range of structural and biophysical techniques, it is demonstrated that ACOT12 is a trimer rather than a tetramer and that neither ADP nor ATP exert their regulatory effects by altering the oligomeric status of the enzyme. Rather, the binding site and mechanism of ADP regulation have been determined to occur through two novel regulatory regions, one involving a large loop that links the thioesterase domains (Phe154-Thr178), defined here as RegLoop1, and a second region involving the C terminus of thioesterase domain 2 (Gln304-Gly326), designated RegLoop2. Mutagenesis confirmed that Arg312 and Arg313 are crucial for this mode of regulation, and novel interactions with the START domain are presented together with insights into domain swapping within eukaryotic thioesterases for substrate recognition. In summary, these experiments provide the first structural insights into the regulation of this enzyme family, revealing an alternate hypothesis likely to be conserved throughout evolution.  相似文献   

14.
15.
Phytanic acid and pristanic acid are derived from phytol, which enter the body via the diet. Phytanic acid contains a methyl group in position three and, therefore, cannot undergo beta-oxidation directly but instead must first undergo alpha-oxidation to pristanic acid, which then enters beta-oxidation. Both these pathways occur in peroxisomes, and in this study we have identified a novel peroxisomal acyl-CoA thioesterase named ACOT6, which we show is specifically involved in phytanic acid and pristanic acid metabolism. Sequence analysis of ACOT6 revealed a putative peroxisomal targeting signal at the C-terminal end, and cellular localization experiments verified it as a peroxisomal enzyme. Subcellular fractionation experiments showed that peroxisomes contain by far the highest phytanoyl-CoA/pristanoyl-CoA thioesterase activity in the cell, which could be almost completely immunoprecipitated using an ACOT6 antibody. Acot6 mRNA was mainly expressed in white adipose tissue and was co-expressed in tissues with Acox3 (the pristanoyl-CoA oxidase). Furthermore, Acot6 was identified as a target gene of the peroxisome proliferator-activated receptor alpha (PPARalpha) and is up-regulated in mouse liver in a PPARalpha-dependent manner.  相似文献   

16.
Microbial biosynthesis of fatty acid-like chemicals from renewable carbon sources has attracted significant attention in recent years. Free fatty acids can be used as precursors for the production of fuels or chemicals. Free fatty acids can be produced by introducing an acyl–acyl carrier protein thioesterase gene into Escherichia coli. The presence of the acyl-ACP thioesterase will break the fatty acid elongation cycle and release free fatty acid. Depending on their sequence similarity and substrate specificity, class FatA thioesterase is active on unsaturated acyl-ACPs and class FatB prefers saturated acyl group. Different acyl-ACP thioesterases have different degrees of chain length specificity. Although some of these enzymes have been characterized from a number of sources, information on their ability to produce free fatty acid in microbial cells has not been extensively examined until recently. In this study, we examined the effect of the overexpression of acyl-ACP thioesterase genes from Diploknema butyracea, Gossypium hirsutum, Ricinus communis and Jatropha curcas on free fatty acid production. In particular, we are interested in studying the effect of different acyl-ACP thioesterase on the quantities and compositions of free fatty acid produced by an E. coli strain ML103 carrying these constructs. It is shown that the accumulation of free fatty acid depends on the acyl-ACP thioesterase used. The strain carrying the acyl-ACP thioesterase gene from D. butyracea produced approximately 0.2 g/L of free fatty acid while the strains carrying the acyl-ACP thioesterase genes from R. communis and J. curcas produced the most free fatty acid at a high level of more than 2.0 g/L at 48 h. These two strains accumulated three major straight chain free fatty acids, C14, C16:1 and C16 at levels about 40%, 35% and 20%, respectively.  相似文献   

17.
18.
T Seay  D R Lueking 《Biochemistry》1986,25(9):2480-2485
A high molecular weight acyl coenzyme A (acyl-CoA) thioesterase, designated thioesterase II, has been purified 5300-fold from photoheterotrophically grown cells of Rhodopseudomonas sphaeroides. In contrast to R. sphaeroides acyl-CoA thioesterase I [Boyce, S.G., & Lueking, D.R. (1984) Biochemistry 23, 141-147], thioesterase II has a native molecular mass (Mr) of 120,000, is capable of hydrolyzing saturated and unsaturated acyl-CoA substrates with acyl chain lengths ranging from C4 to C18, and is completely insensitive to the serine esterase inhibitor diisopropyl fluorophosphate. Palmitoyl-CoA and stearoyl-CoA are the preferred (lowest Km) saturated acyl-CoA substrates and vaccenoyl-CoA is the preferred unsaturated substrate. However, comparable Vmax values were obtained with a variety of acyl-CoA substrates. Unlike a similar thioesterase present in cells of Escherichia coli [Bonner, W.M., & Bloch, K. (1972) J. Biol. Chem. 247, 3123-3133], R. sphaeroides thioesterase II displays a high ratio of decanoyl-CoA to palmitoyl-CoA activities and exhibits little ability to hydrolyze 3-hydroxyacyl-CoA substrates. Only 3-hydroxydodecanoyl-CoA supported a measurable rate of enzyme activity. With the purification of thioesterase II, the enzymes responsible for greater than 90% of the acyl-CoA thioesterase activity present in cell-free extracts of R. sphaeroides have now been identified.  相似文献   

19.
The chromosome of Streptomyces coelicolor A3(2), a model organism for the genus Streptomyces, contains a cryptic type I polyketide synthase (PKS) gene cluster which was revealed when the genome was sequenced. The ca. 54-kb cluster contains three large genes, cpkA, cpkB and cpkC, encoding the PKS subunits. In silico analysis showed that the synthase consists of a loading module, five extension modules and a unique reductase as a terminal domain instead of a typical thioesterase. All acyltransferase domains are specific for a malonyl extender, and have a B-type ketoreductase. Tailoring and regulatory genes were also identified within the gene cluster. Surprisingly, some genes show high similarity to primary metabolite genes not commonly identified in any antibiotic biosynthesis cluster. Using western blot analysis with a PKS subunit (CpkC) antibody, CpkC was shown to be expressed in S. coelicolor at transition phase. Disruption of cpkC gave no obvious phenotype.  相似文献   

20.
Summary A hybrid Cauliflower Mosaic Virus (CaMV) genome containing a selectable marker gene was constructed by replacing the gene VI coding region with the aminoglycoside (neomycin) phosphotransferase type II [APH(3)II] gene from Tn5. This modified viral genome was tested for its infectivity both in planta and in a protoplast transformation system of Brassica campestris var. rapa. Stable, genetically transformed cell lines of B. campestris var. rapa were obtained after transformation. DNA of the hybrid CaMV genome was found to be integrated into high molecular weight plant genomic DNA. Transformation was achieved only when the hybrid genome was supplied together with wild type viral DNA. A possible complementation of the modified CaMV genome with the wild type viral DNA as a helper molecule in planta and in the protoplast system is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号